Inequality of Chances as a Symmetry Phase Transition
We propose a model for Lorenz curves. It provides two-parameter fits to data on incomes, electric consumption, life expectation and rate of survival after cancer. Graphs result from the condition of maximum entropy and from the symmetry of statistical distributions. Differences in populations compos...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2013-05-01
|
Series: | Entropy |
Subjects: | |
Online Access: | http://www.mdpi.com/1099-4300/15/6/1985 |
_version_ | 1817990244221321216 |
---|---|
author | Jorge Rosenblatt |
author_facet | Jorge Rosenblatt |
author_sort | Jorge Rosenblatt |
collection | DOAJ |
description | We propose a model for Lorenz curves. It provides two-parameter fits to data on incomes, electric consumption, life expectation and rate of survival after cancer. Graphs result from the condition of maximum entropy and from the symmetry of statistical distributions. Differences in populations composing a binary system (poor and rich, young and old, etc.) bring about chance inequality. Symmetrical distributions insure equality of chances, generate Gini coefficients Gi £ ⅓, and imply that nobody gets more than twice the per capita benefit. Graphs generated by different symmetric distributions, but having the same Gini coefficient, intersect an even number of times. The change toward asymmetric distributions follows the pattern set by second-order phase transitions in physics, in particular universality: Lorenz plots reduce to a single universal curve after normalisation and scaling. The order parameter is the difference between cumulated benefit fractions for equal and unequal chances. The model also introduces new parameters: a cohesion range describing the extent of apparent equality in an unequal society, a poor-rich asymmetry parameter, and a new Gini-like indicator that measures unequal-chance inequality and admits a theoretical expression in closed form. |
first_indexed | 2024-04-14T00:56:00Z |
format | Article |
id | doaj.art-051196fbfa1743138a0b3397fb9253a8 |
institution | Directory Open Access Journal |
issn | 1099-4300 |
language | English |
last_indexed | 2024-04-14T00:56:00Z |
publishDate | 2013-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Entropy |
spelling | doaj.art-051196fbfa1743138a0b3397fb9253a82022-12-22T02:21:35ZengMDPI AGEntropy1099-43002013-05-011561985199810.3390/e15061985Inequality of Chances as a Symmetry Phase TransitionJorge RosenblattWe propose a model for Lorenz curves. It provides two-parameter fits to data on incomes, electric consumption, life expectation and rate of survival after cancer. Graphs result from the condition of maximum entropy and from the symmetry of statistical distributions. Differences in populations composing a binary system (poor and rich, young and old, etc.) bring about chance inequality. Symmetrical distributions insure equality of chances, generate Gini coefficients Gi £ ⅓, and imply that nobody gets more than twice the per capita benefit. Graphs generated by different symmetric distributions, but having the same Gini coefficient, intersect an even number of times. The change toward asymmetric distributions follows the pattern set by second-order phase transitions in physics, in particular universality: Lorenz plots reduce to a single universal curve after normalisation and scaling. The order parameter is the difference between cumulated benefit fractions for equal and unequal chances. The model also introduces new parameters: a cohesion range describing the extent of apparent equality in an unequal society, a poor-rich asymmetry parameter, and a new Gini-like indicator that measures unequal-chance inequality and admits a theoretical expression in closed form.http://www.mdpi.com/1099-4300/15/6/1985Lorenz plotsinequality of chancessymmetryphase transitionmaximum entropyGini coefficient |
spellingShingle | Jorge Rosenblatt Inequality of Chances as a Symmetry Phase Transition Entropy Lorenz plots inequality of chances symmetry phase transition maximum entropy Gini coefficient |
title | Inequality of Chances as a Symmetry Phase Transition |
title_full | Inequality of Chances as a Symmetry Phase Transition |
title_fullStr | Inequality of Chances as a Symmetry Phase Transition |
title_full_unstemmed | Inequality of Chances as a Symmetry Phase Transition |
title_short | Inequality of Chances as a Symmetry Phase Transition |
title_sort | inequality of chances as a symmetry phase transition |
topic | Lorenz plots inequality of chances symmetry phase transition maximum entropy Gini coefficient |
url | http://www.mdpi.com/1099-4300/15/6/1985 |
work_keys_str_mv | AT jorgerosenblatt inequalityofchancesasasymmetryphasetransition |