Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman Filters

This paper presents an autonomous unmanned-aerial-vehicle (UAV) tracking system based on an improved long and short-term memory (LSTM) Kalman filter (KF) model. The system can estimate the three-dimensional (3D) attitude and precisely track the target object without manual intervention. Specifically...

Full description

Bibliographic Details
Main Authors: Wei Luo, Yongxiang Zhao, Quanqin Shao, Xiaoliang Li, Dongliang Wang, Tongzuo Zhang, Fei Liu, Longfang Duan, Yuejun He, Yancang Wang, Guoqing Zhang, Xinghui Wang, Zhongde Yu
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/8/3948
_version_ 1797603473512988672
author Wei Luo
Yongxiang Zhao
Quanqin Shao
Xiaoliang Li
Dongliang Wang
Tongzuo Zhang
Fei Liu
Longfang Duan
Yuejun He
Yancang Wang
Guoqing Zhang
Xinghui Wang
Zhongde Yu
author_facet Wei Luo
Yongxiang Zhao
Quanqin Shao
Xiaoliang Li
Dongliang Wang
Tongzuo Zhang
Fei Liu
Longfang Duan
Yuejun He
Yancang Wang
Guoqing Zhang
Xinghui Wang
Zhongde Yu
author_sort Wei Luo
collection DOAJ
description This paper presents an autonomous unmanned-aerial-vehicle (UAV) tracking system based on an improved long and short-term memory (LSTM) Kalman filter (KF) model. The system can estimate the three-dimensional (3D) attitude and precisely track the target object without manual intervention. Specifically, the YOLOX algorithm is employed to track and recognize the target object, which is then combined with the improved KF model for precise tracking and recognition. In the LSTM-KF model, three different LSTM networks (<i>f</i>, <i>Q</i>, and <i>R</i>) are adopted to model a nonlinear transfer function to enable the model to learn rich and dynamic Kalman components from the data. The experimental results disclose that the improved LSTM-KF model exhibits higher recognition accuracy than the standard LSTM and the independent KF model. It verifies the robustness, effectiveness, and reliability of the autonomous UAV tracking system based on the improved LSTM-KF model in object recognition and tracking and 3D attitude estimation.
first_indexed 2024-03-11T04:32:38Z
format Article
id doaj.art-0520ac4711d7435291f117d95f044ca4
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-11T04:32:38Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-0520ac4711d7435291f117d95f044ca42023-11-17T21:16:54ZengMDPI AGSensors1424-82202023-04-01238394810.3390/s23083948Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman FiltersWei Luo0Yongxiang Zhao1Quanqin Shao2Xiaoliang Li3Dongliang Wang4Tongzuo Zhang5Fei Liu6Longfang Duan7Yuejun He8Yancang Wang9Guoqing Zhang10Xinghui Wang11Zhongde Yu12North China Institute of Aerospace Engineering, Langfang 065000, ChinaNorth China Institute of Aerospace Engineering, Langfang 065000, ChinaKey Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, ChinaNorth China Institute of Aerospace Engineering, Langfang 065000, ChinaKey Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, ChinaUniversity of Chinese Academy of Sciences, Beijing 101407, ChinaIntelligent Garden and Ecohealth Laboratory (iGE), College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, ChinaNorth China Institute of Aerospace Engineering, Langfang 065000, ChinaNorth China Institute of Aerospace Engineering, Langfang 065000, ChinaNorth China Institute of Aerospace Engineering, Langfang 065000, ChinaNorth China Institute of Aerospace Engineering, Langfang 065000, ChinaNorth China Institute of Aerospace Engineering, Langfang 065000, ChinaNorth China Institute of Aerospace Engineering, Langfang 065000, ChinaThis paper presents an autonomous unmanned-aerial-vehicle (UAV) tracking system based on an improved long and short-term memory (LSTM) Kalman filter (KF) model. The system can estimate the three-dimensional (3D) attitude and precisely track the target object without manual intervention. Specifically, the YOLOX algorithm is employed to track and recognize the target object, which is then combined with the improved KF model for precise tracking and recognition. In the LSTM-KF model, three different LSTM networks (<i>f</i>, <i>Q</i>, and <i>R</i>) are adopted to model a nonlinear transfer function to enable the model to learn rich and dynamic Kalman components from the data. The experimental results disclose that the improved LSTM-KF model exhibits higher recognition accuracy than the standard LSTM and the independent KF model. It verifies the robustness, effectiveness, and reliability of the autonomous UAV tracking system based on the improved LSTM-KF model in object recognition and tracking and 3D attitude estimation.https://www.mdpi.com/1424-8220/23/8/3948Procapra przewalskii protectionautonomous unmanned aerial vehicleobject trackingKalman filterlong and short-term memory
spellingShingle Wei Luo
Yongxiang Zhao
Quanqin Shao
Xiaoliang Li
Dongliang Wang
Tongzuo Zhang
Fei Liu
Longfang Duan
Yuejun He
Yancang Wang
Guoqing Zhang
Xinghui Wang
Zhongde Yu
Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman Filters
Sensors
Procapra przewalskii protection
autonomous unmanned aerial vehicle
object tracking
Kalman filter
long and short-term memory
title Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman Filters
title_full Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman Filters
title_fullStr Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman Filters
title_full_unstemmed Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman Filters
title_short Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman Filters
title_sort procapra przewalskii tracking autonomous unmanned aerial vehicle based on improved long and short term memory kalman filters
topic Procapra przewalskii protection
autonomous unmanned aerial vehicle
object tracking
Kalman filter
long and short-term memory
url https://www.mdpi.com/1424-8220/23/8/3948
work_keys_str_mv AT weiluo procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT yongxiangzhao procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT quanqinshao procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT xiaoliangli procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT dongliangwang procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT tongzuozhang procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT feiliu procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT longfangduan procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT yuejunhe procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT yancangwang procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT guoqingzhang procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT xinghuiwang procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters
AT zhongdeyu procapraprzewalskiitrackingautonomousunmannedaerialvehiclebasedonimprovedlongandshorttermmemorykalmanfilters