Almost-Periodic Weak Solutions of Second-Order Neutral Delay-Differential Equations with Piecewise Constant Argument

<p/> <p>We investigate the existence of almost-periodic weak solutions of second-order neutral delay-differential equations with piecewise constant argument of the form <inline-formula> <graphic file="1687-1847-2008-816091-i1.gif"/></inline-formula>, where <...

Full description

Bibliographic Details
Main Authors: Wang Li, Zhang Chuanyi
Format: Article
Language:English
Published: SpringerOpen 2008-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2008/816091
_version_ 1818428998299942912
author Wang Li
Zhang Chuanyi
author_facet Wang Li
Zhang Chuanyi
author_sort Wang Li
collection DOAJ
description <p/> <p>We investigate the existence of almost-periodic weak solutions of second-order neutral delay-differential equations with piecewise constant argument of the form <inline-formula> <graphic file="1687-1847-2008-816091-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1687-1847-2008-816091-i2.gif"/></inline-formula> denotes the greatest integer function, <inline-formula> <graphic file="1687-1847-2008-816091-i3.gif"/></inline-formula> is a real nonzero constant, and <inline-formula> <graphic file="1687-1847-2008-816091-i4.gif"/></inline-formula> is almost periodic.</p>
first_indexed 2024-12-14T15:10:31Z
format Article
id doaj.art-0547cfb3cd8541ce869716e34a18ee8c
institution Directory Open Access Journal
issn 1687-1839
1687-1847
language English
last_indexed 2024-12-14T15:10:31Z
publishDate 2008-01-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-0547cfb3cd8541ce869716e34a18ee8c2022-12-21T22:56:35ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472008-01-0120081816091Almost-Periodic Weak Solutions of Second-Order Neutral Delay-Differential Equations with Piecewise Constant ArgumentWang LiZhang Chuanyi<p/> <p>We investigate the existence of almost-periodic weak solutions of second-order neutral delay-differential equations with piecewise constant argument of the form <inline-formula> <graphic file="1687-1847-2008-816091-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1687-1847-2008-816091-i2.gif"/></inline-formula> denotes the greatest integer function, <inline-formula> <graphic file="1687-1847-2008-816091-i3.gif"/></inline-formula> is a real nonzero constant, and <inline-formula> <graphic file="1687-1847-2008-816091-i4.gif"/></inline-formula> is almost periodic.</p>http://www.advancesindifferenceequations.com/content/2008/816091
spellingShingle Wang Li
Zhang Chuanyi
Almost-Periodic Weak Solutions of Second-Order Neutral Delay-Differential Equations with Piecewise Constant Argument
Advances in Difference Equations
title Almost-Periodic Weak Solutions of Second-Order Neutral Delay-Differential Equations with Piecewise Constant Argument
title_full Almost-Periodic Weak Solutions of Second-Order Neutral Delay-Differential Equations with Piecewise Constant Argument
title_fullStr Almost-Periodic Weak Solutions of Second-Order Neutral Delay-Differential Equations with Piecewise Constant Argument
title_full_unstemmed Almost-Periodic Weak Solutions of Second-Order Neutral Delay-Differential Equations with Piecewise Constant Argument
title_short Almost-Periodic Weak Solutions of Second-Order Neutral Delay-Differential Equations with Piecewise Constant Argument
title_sort almost periodic weak solutions of second order neutral delay differential equations with piecewise constant argument
url http://www.advancesindifferenceequations.com/content/2008/816091
work_keys_str_mv AT wangli almostperiodicweaksolutionsofsecondorderneutraldelaydifferentialequationswithpiecewiseconstantargument
AT zhangchuanyi almostperiodicweaksolutionsofsecondorderneutraldelaydifferentialequationswithpiecewiseconstantargument