First Integrals of Shear-Free Fluids and Complexity

A single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics&g...

Full description

Bibliographic Details
Main Authors: Sfundo C. Gumede, Keshlan S. Govinder, Sunil D. Maharaj
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/11/1539
_version_ 1797510342351257600
author Sfundo C. Gumede
Keshlan S. Govinder
Sunil D. Maharaj
author_facet Sfundo C. Gumede
Keshlan S. Govinder
Sunil D. Maharaj
author_sort Sfundo C. Gumede
collection DOAJ
description A single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mi>y</mi><mn>2</mn></msup><mo>,</mo></mrow></semantics></math></inline-formula> find new solutions, and generate a new first integral. The first integral is subject to an integrability condition which is an integral equation which restricts the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> We find that the integrability condition can be written as a third order differential equation whose solution can be expressed in terms of elementary functions and elliptic integrals. The solution of the integrability condition is generally given parametrically. A particular form of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><mfrac><mn>1</mn><msup><mi>x</mi><mn>5</mn></msup></mfrac><msup><mfenced separators="" open="(" close=")"><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mfenced><mrow><mo>−</mo><mn>15</mn><mo>/</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> which corresponds to repeated roots of a cubic equation is given explicitly, which is a new result. Our investigation demonstrates that complexity of a self-gravitating shear-free fluid is related to the existence of a first integral, and this may be extendable to general matter distributions.
first_indexed 2024-03-10T05:30:08Z
format Article
id doaj.art-05483e2da13c419c8c1751dda5819836
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T05:30:08Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-05483e2da13c419c8c1751dda58198362023-11-22T23:16:27ZengMDPI AGEntropy1099-43002021-11-012311153910.3390/e23111539First Integrals of Shear-Free Fluids and ComplexitySfundo C. Gumede0Keshlan S. Govinder1Sunil D. Maharaj2Astrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South AfricaAstrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South AfricaAstrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South AfricaA single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mi>y</mi><mn>2</mn></msup><mo>,</mo></mrow></semantics></math></inline-formula> find new solutions, and generate a new first integral. The first integral is subject to an integrability condition which is an integral equation which restricts the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> We find that the integrability condition can be written as a third order differential equation whose solution can be expressed in terms of elementary functions and elliptic integrals. The solution of the integrability condition is generally given parametrically. A particular form of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><mfrac><mn>1</mn><msup><mi>x</mi><mn>5</mn></msup></mfrac><msup><mfenced separators="" open="(" close=")"><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mfenced><mrow><mo>−</mo><mn>15</mn><mo>/</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> which corresponds to repeated roots of a cubic equation is given explicitly, which is a new result. Our investigation demonstrates that complexity of a self-gravitating shear-free fluid is related to the existence of a first integral, and this may be extendable to general matter distributions.https://www.mdpi.com/1099-4300/23/11/1539shear-free fluidsEinstein field equationsfirst integrals
spellingShingle Sfundo C. Gumede
Keshlan S. Govinder
Sunil D. Maharaj
First Integrals of Shear-Free Fluids and Complexity
Entropy
shear-free fluids
Einstein field equations
first integrals
title First Integrals of Shear-Free Fluids and Complexity
title_full First Integrals of Shear-Free Fluids and Complexity
title_fullStr First Integrals of Shear-Free Fluids and Complexity
title_full_unstemmed First Integrals of Shear-Free Fluids and Complexity
title_short First Integrals of Shear-Free Fluids and Complexity
title_sort first integrals of shear free fluids and complexity
topic shear-free fluids
Einstein field equations
first integrals
url https://www.mdpi.com/1099-4300/23/11/1539
work_keys_str_mv AT sfundocgumede firstintegralsofshearfreefluidsandcomplexity
AT keshlansgovinder firstintegralsofshearfreefluidsandcomplexity
AT sunildmaharaj firstintegralsofshearfreefluidsandcomplexity