First Integrals of Shear-Free Fluids and Complexity
A single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics&g...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/11/1539 |
_version_ | 1797510342351257600 |
---|---|
author | Sfundo C. Gumede Keshlan S. Govinder Sunil D. Maharaj |
author_facet | Sfundo C. Gumede Keshlan S. Govinder Sunil D. Maharaj |
author_sort | Sfundo C. Gumede |
collection | DOAJ |
description | A single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mi>y</mi><mn>2</mn></msup><mo>,</mo></mrow></semantics></math></inline-formula> find new solutions, and generate a new first integral. The first integral is subject to an integrability condition which is an integral equation which restricts the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> We find that the integrability condition can be written as a third order differential equation whose solution can be expressed in terms of elementary functions and elliptic integrals. The solution of the integrability condition is generally given parametrically. A particular form of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><mfrac><mn>1</mn><msup><mi>x</mi><mn>5</mn></msup></mfrac><msup><mfenced separators="" open="(" close=")"><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mfenced><mrow><mo>−</mo><mn>15</mn><mo>/</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> which corresponds to repeated roots of a cubic equation is given explicitly, which is a new result. Our investigation demonstrates that complexity of a self-gravitating shear-free fluid is related to the existence of a first integral, and this may be extendable to general matter distributions. |
first_indexed | 2024-03-10T05:30:08Z |
format | Article |
id | doaj.art-05483e2da13c419c8c1751dda5819836 |
institution | Directory Open Access Journal |
issn | 1099-4300 |
language | English |
last_indexed | 2024-03-10T05:30:08Z |
publishDate | 2021-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Entropy |
spelling | doaj.art-05483e2da13c419c8c1751dda58198362023-11-22T23:16:27ZengMDPI AGEntropy1099-43002021-11-012311153910.3390/e23111539First Integrals of Shear-Free Fluids and ComplexitySfundo C. Gumede0Keshlan S. Govinder1Sunil D. Maharaj2Astrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South AfricaAstrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South AfricaAstrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South AfricaA single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mi>y</mi><mn>2</mn></msup><mo>,</mo></mrow></semantics></math></inline-formula> find new solutions, and generate a new first integral. The first integral is subject to an integrability condition which is an integral equation which restricts the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> We find that the integrability condition can be written as a third order differential equation whose solution can be expressed in terms of elementary functions and elliptic integrals. The solution of the integrability condition is generally given parametrically. A particular form of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><mfrac><mn>1</mn><msup><mi>x</mi><mn>5</mn></msup></mfrac><msup><mfenced separators="" open="(" close=")"><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mfenced><mrow><mo>−</mo><mn>15</mn><mo>/</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> which corresponds to repeated roots of a cubic equation is given explicitly, which is a new result. Our investigation demonstrates that complexity of a self-gravitating shear-free fluid is related to the existence of a first integral, and this may be extendable to general matter distributions.https://www.mdpi.com/1099-4300/23/11/1539shear-free fluidsEinstein field equationsfirst integrals |
spellingShingle | Sfundo C. Gumede Keshlan S. Govinder Sunil D. Maharaj First Integrals of Shear-Free Fluids and Complexity Entropy shear-free fluids Einstein field equations first integrals |
title | First Integrals of Shear-Free Fluids and Complexity |
title_full | First Integrals of Shear-Free Fluids and Complexity |
title_fullStr | First Integrals of Shear-Free Fluids and Complexity |
title_full_unstemmed | First Integrals of Shear-Free Fluids and Complexity |
title_short | First Integrals of Shear-Free Fluids and Complexity |
title_sort | first integrals of shear free fluids and complexity |
topic | shear-free fluids Einstein field equations first integrals |
url | https://www.mdpi.com/1099-4300/23/11/1539 |
work_keys_str_mv | AT sfundocgumede firstintegralsofshearfreefluidsandcomplexity AT keshlansgovinder firstintegralsofshearfreefluidsandcomplexity AT sunildmaharaj firstintegralsofshearfreefluidsandcomplexity |