Cave monitoring in the Béke and Baradla caves (Northeastern Hungary): implications for the conditions for the formation cave carbonates

In order to use speleothems in the reconstruction of past climate and environmental changes it is necessary to understand the environmental and hydrological processes that determine the physico-chemical conditions of carbonate precipitation and hence speleothem formation. Therefore, in this study an...

Full description

Bibliographic Details
Main Authors: György Czuppon, Attila Demény, Szabolcs Leél-Őssy, Mihály Óvari, Mihály Molnár, József Stieber, Klaudia Kiss, Krisztina Kármán, Gergely Surányi, László Haszpra
Format: Article
Language:English
Published: University of South Florida Libraries 2018-01-01
Series:International Journal of Speleology
Subjects:
Online Access:http://scholarcommons.usf.edu/ijs/vol47/iss1/2/
Description
Summary:In order to use speleothems in the reconstruction of past climate and environmental changes it is necessary to understand the environmental and hydrological processes that determine the physico-chemical conditions of carbonate precipitation and hence speleothem formation. Therefore, in this study an extended monitoring program was conducted in the Béke and Baradla caves located in the Aggtelek region (Northeastern Hungary). The studied caves are rich in speleothem and flowstone occurrences with great potential for paleoclimatology studies. The monitoring activity included measurements of atmospheric and cave temperatures, CO2 concentration in cave air, as well as chemical and isotopic compositions of water samples (drip water, precipitation) and in situ carbonate precipitates. The hydrogen and oxygen isotope compositions of drip waters showed no seasonal variation at any of the collection sites, indicating a well-mixed karstic aquifer. This implies that the isotopic compositions of local speleothems were able to record multiannual isotopic changes inherited from stable isotopes in the drip water. CO2 concentration showed seasonality (high values in summer and low values in winter) in both caves, likely affecting carbonate precipitation or corrosion and consequently stalagmite growth. Systematic variations among Mg/Ca and Sr/Ca, Na/Ca, and Si/Ca element ratios were detected in the drip water suggesting Prior Calcite Precipitation (PCP). As PCP is characteristic of periods of reduced infiltration during drier weather conditions, the variations in drip water chemistry and drip rates indicate that the hydrological conditions also varied significantly during the studied period. This hydrological variability appears to affect not only trace element composition but also the isotopic composition of modern carbonate precipitates. In summary, these findings imply that the speleothems from the studied caves were able to record the hydrological changes resulting from alternating wet and dry periods, and therefore the geochemical data can be used to reconstruct past climate and environmental changes.
ISSN:0392-6672
1827-806X