Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression Data

Antipsychotics (APs) are associated with weight gain and other metabolic abnormalities such as hyperglycemia, dyslipidemia and metabolic syndrome. This translational study aimed to uncover the underlying molecular mechanisms and identify the key genes involved in AP-induced metabolic effects. An int...

Full description

Bibliographic Details
Main Authors: Albert Martínez-Pinteño, Patricia Gassó, Llucia Prohens, Alex G. Segura, Mara Parellada, Jerónimo Saiz-Ruiz, Manuel J. Cuesta, Miguel Bernardo, Amalia Lafuente, Sergi Mas, Natalia Rodríguez
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-08-01
Series:Frontiers in Pharmacology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphar.2021.729474/full
_version_ 1819157170824937472
author Albert Martínez-Pinteño
Patricia Gassó
Patricia Gassó
Patricia Gassó
Llucia Prohens
Alex G. Segura
Mara Parellada
Mara Parellada
Jerónimo Saiz-Ruiz
Jerónimo Saiz-Ruiz
Manuel J. Cuesta
Manuel J. Cuesta
Miguel Bernardo
Miguel Bernardo
Miguel Bernardo
Miguel Bernardo
Amalia Lafuente
Amalia Lafuente
Amalia Lafuente
Sergi Mas
Sergi Mas
Sergi Mas
Natalia Rodríguez
author_facet Albert Martínez-Pinteño
Patricia Gassó
Patricia Gassó
Patricia Gassó
Llucia Prohens
Alex G. Segura
Mara Parellada
Mara Parellada
Jerónimo Saiz-Ruiz
Jerónimo Saiz-Ruiz
Manuel J. Cuesta
Manuel J. Cuesta
Miguel Bernardo
Miguel Bernardo
Miguel Bernardo
Miguel Bernardo
Amalia Lafuente
Amalia Lafuente
Amalia Lafuente
Sergi Mas
Sergi Mas
Sergi Mas
Natalia Rodríguez
author_sort Albert Martínez-Pinteño
collection DOAJ
description Antipsychotics (APs) are associated with weight gain and other metabolic abnormalities such as hyperglycemia, dyslipidemia and metabolic syndrome. This translational study aimed to uncover the underlying molecular mechanisms and identify the key genes involved in AP-induced metabolic effects. An integrative gene expression analysis was performed in four different mouse tissues (striatum, liver, pancreas and adipose) after risperidone or olanzapine treatment. The analytical approach combined the identification of the gene co-expression modules related to AP treatment, gene set enrichment analysis and protein-protein interaction network construction. We found several co-expression modules of genes involved in glucose and lipid homeostasis, hormone regulation and other processes related to metabolic impairment. Among these genes, EP300, which encodes an acetyltransferase involved in transcriptional regulation, was identified as the most important hub gene overlapping the networks of both APs. Then, we explored the genetically predicted EP300 expression levels in a cohort of 226 patients with first-episode psychosis who were being treated with APs to further assess the association of this gene with metabolic alterations. The EP300 expression levels were significantly associated with increases in body weight, body mass index, total cholesterol levels, low-density lipoprotein cholesterol levels and triglyceride concentrations after 6 months of AP treatment. Taken together, our analysis identified EP300 as a key gene in AP-induced metabolic abnormalities, indicating that the dysregulation of EP300 function could be important in the development of these side effects. However, more studies are needed to disentangle the role of this gene in the mechanism of action of APs.
first_indexed 2024-12-22T16:04:31Z
format Article
id doaj.art-05652b2e8938444fa91c73adb12bc746
institution Directory Open Access Journal
issn 1663-9812
language English
last_indexed 2024-12-22T16:04:31Z
publishDate 2021-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Pharmacology
spelling doaj.art-05652b2e8938444fa91c73adb12bc7462022-12-21T18:20:37ZengFrontiers Media S.A.Frontiers in Pharmacology1663-98122021-08-011210.3389/fphar.2021.729474729474Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression DataAlbert Martínez-Pinteño0Patricia Gassó1Patricia Gassó2Patricia Gassó3Llucia Prohens4Alex G. Segura5Mara Parellada6Mara Parellada7Jerónimo Saiz-Ruiz8Jerónimo Saiz-Ruiz9Manuel J. Cuesta10Manuel J. Cuesta11Miguel Bernardo12Miguel Bernardo13Miguel Bernardo14Miguel Bernardo15Amalia Lafuente16Amalia Lafuente17Amalia Lafuente18Sergi Mas19Sergi Mas20Sergi Mas21Natalia Rodríguez22Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, SpainDepartment of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, SpainInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, SpainCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, SpainDepartment of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, SpainDepartment of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, SpainCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, SpainDepartment of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, SpainCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, SpainDepartment of Psychiatry, Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá, Madrid, SpainCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, SpainDepartment of Psychiatry, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, SpainInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, SpainCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, SpainBarcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Barcelona, SpainDepartment of Medicine, University of Barcelona, Barcelona, SpainDepartment of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, SpainInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, SpainCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, SpainDepartment of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, SpainInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, SpainCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, SpainDepartment of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, SpainAntipsychotics (APs) are associated with weight gain and other metabolic abnormalities such as hyperglycemia, dyslipidemia and metabolic syndrome. This translational study aimed to uncover the underlying molecular mechanisms and identify the key genes involved in AP-induced metabolic effects. An integrative gene expression analysis was performed in four different mouse tissues (striatum, liver, pancreas and adipose) after risperidone or olanzapine treatment. The analytical approach combined the identification of the gene co-expression modules related to AP treatment, gene set enrichment analysis and protein-protein interaction network construction. We found several co-expression modules of genes involved in glucose and lipid homeostasis, hormone regulation and other processes related to metabolic impairment. Among these genes, EP300, which encodes an acetyltransferase involved in transcriptional regulation, was identified as the most important hub gene overlapping the networks of both APs. Then, we explored the genetically predicted EP300 expression levels in a cohort of 226 patients with first-episode psychosis who were being treated with APs to further assess the association of this gene with metabolic alterations. The EP300 expression levels were significantly associated with increases in body weight, body mass index, total cholesterol levels, low-density lipoprotein cholesterol levels and triglyceride concentrations after 6 months of AP treatment. Taken together, our analysis identified EP300 as a key gene in AP-induced metabolic abnormalities, indicating that the dysregulation of EP300 function could be important in the development of these side effects. However, more studies are needed to disentangle the role of this gene in the mechanism of action of APs.https://www.frontiersin.org/articles/10.3389/fphar.2021.729474/fullantipsychoticsweight gainmetabolic syndromepharmacogeneticsEP300gene
spellingShingle Albert Martínez-Pinteño
Patricia Gassó
Patricia Gassó
Patricia Gassó
Llucia Prohens
Alex G. Segura
Mara Parellada
Mara Parellada
Jerónimo Saiz-Ruiz
Jerónimo Saiz-Ruiz
Manuel J. Cuesta
Manuel J. Cuesta
Miguel Bernardo
Miguel Bernardo
Miguel Bernardo
Miguel Bernardo
Amalia Lafuente
Amalia Lafuente
Amalia Lafuente
Sergi Mas
Sergi Mas
Sergi Mas
Natalia Rodríguez
Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression Data
Frontiers in Pharmacology
antipsychotics
weight gain
metabolic syndrome
pharmacogenetics
EP300
gene
title Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression Data
title_full Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression Data
title_fullStr Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression Data
title_full_unstemmed Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression Data
title_short Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression Data
title_sort identification of ep300 as a key gene involved in antipsychotic induced metabolic dysregulation based on integrative bioinformatics analysis of multi tissue gene expression data
topic antipsychotics
weight gain
metabolic syndrome
pharmacogenetics
EP300
gene
url https://www.frontiersin.org/articles/10.3389/fphar.2021.729474/full
work_keys_str_mv AT albertmartinezpinteno identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT patriciagasso identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT patriciagasso identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT patriciagasso identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT lluciaprohens identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT alexgsegura identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT maraparellada identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT maraparellada identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT jeronimosaizruiz identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT jeronimosaizruiz identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT manueljcuesta identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT manueljcuesta identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT miguelbernardo identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT miguelbernardo identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT miguelbernardo identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT miguelbernardo identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT amalialafuente identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT amalialafuente identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT amalialafuente identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT sergimas identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT sergimas identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT sergimas identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata
AT nataliarodriguez identificationofep300asakeygeneinvolvedinantipsychoticinducedmetabolicdysregulationbasedonintegrativebioinformaticsanalysisofmultitissuegeneexpressiondata