Geographic and Opportunistic Hybrid Routing Protocol for Underwater Sensor Networks Based on Autonomous Underwater Vehicle

Aiming at the problems of underwater sensor networks (UWSN) such as high energy consumption, low transmission rate and narrow bandwidth, this paper proposes a geographic and opportunistic hybrid routing protocol (GOHRP) for UWSN based on autonomous underwater vehicle (AUV). In the initial stage, GOH...

Full description

Bibliographic Details
Main Author: DING Yuying, HAO Kun, LI Cheng
Format: Article
Language:zho
Published: Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press 2020-09-01
Series:Jisuanji kexue yu tansuo
Subjects:
Online Access:http://fcst.ceaj.org/CN/abstract/abstract2357.shtml
Description
Summary:Aiming at the problems of underwater sensor networks (UWSN) such as high energy consumption, low transmission rate and narrow bandwidth, this paper proposes a geographic and opportunistic hybrid routing protocol (GOHRP) for UWSN based on autonomous underwater vehicle (AUV). In the initial stage, GOHRP designs layered networks with unequal spacing based on the depth of ordinary nodes, and selects the agent nodes of each layer according to the weight of ordinary nodes. In the routing stage, the ordinary nodes forward the collected data and value of information (VOI) reflecting the importance and timeliness of the underwater events to the agent node through the opportunistic routing strategy. Then, AUV adopts a dynamic routing strategy to visit preferentially the agent node with the largest VOI, and transmits the data on the agent node to the surface buoy. The simulation results show that GOHRP not only ensures efficient and stable data transmission rate, but also reduces network delay and improves energy utilization.
ISSN:1673-9418