Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation
This study focuses on the analysis of aerosol hygroscopic growth during the Sierra Nevada Lidar AerOsol Profiling Experiment (SLOPE I) campaign by using the synergy of active and passive remote sensors at the ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada,...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-05-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/18/7001/2018/acp-18-7001-2018.pdf |
_version_ | 1818557924840046592 |
---|---|
author | A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez F. Navas-Guzmán M. J. Granados-Muñoz G. Titos G. Titos R. Román R. Román R. Román J. A. Casquero-Vera J. A. Casquero-Vera P. Ortiz-Amezcua P. Ortiz-Amezcua J. A. Benavent-Oltra J. A. Benavent-Oltra G. de Arruda Moreira G. de Arruda Moreira G. de Arruda Moreira E. Montilla-Rosero C. D. Hoyos B. Artiñano E. Coz F. J. Olmo-Reyes F. J. Olmo-Reyes L. Alados-Arboledas L. Alados-Arboledas J. L. Guerrero-Rascado J. L. Guerrero-Rascado |
author_facet | A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez F. Navas-Guzmán M. J. Granados-Muñoz G. Titos G. Titos R. Román R. Román R. Román J. A. Casquero-Vera J. A. Casquero-Vera P. Ortiz-Amezcua P. Ortiz-Amezcua J. A. Benavent-Oltra J. A. Benavent-Oltra G. de Arruda Moreira G. de Arruda Moreira G. de Arruda Moreira E. Montilla-Rosero C. D. Hoyos B. Artiñano E. Coz F. J. Olmo-Reyes F. J. Olmo-Reyes L. Alados-Arboledas L. Alados-Arboledas J. L. Guerrero-Rascado J. L. Guerrero-Rascado |
author_sort | A. E. Bedoya-Velásquez |
collection | DOAJ |
description | This study focuses on the analysis of aerosol hygroscopic growth during the
Sierra Nevada Lidar AerOsol Profiling Experiment (SLOPE I) campaign by using
the synergy of active and passive remote sensors at the ACTRIS Granada
station and in situ instrumentation at a mountain station (Sierra Nevada,
SNS). To this end, a methodology based on simultaneous measurements of
aerosol profiles from an EARLINET multi-wavelength Raman lidar (RL) and
relative humidity (RH) profiles obtained from a multi-instrumental approach
is used. This approach is based on the combination of calibrated water vapor
mixing ratio (<i>r</i>) profiles from RL and continuous temperature profiles from
a microwave radiometer (MWR) for obtaining RH profiles with a reasonable
vertical and temporal resolution. This methodology is validated against the
traditional one that uses RH from co-located radiosounding (RS) measurements,
obtaining differences in the hygroscopic growth parameter (<i>γ</i>) lower
than 5 % between the methodology based on RS and the one presented here.
Additionally, during the SLOPE I campaign the remote sensing methodology used
for aerosol hygroscopic growth studies has been checked against Mie
calculations of aerosol hygroscopic growth using in situ measurements of
particle number size distribution and submicron chemical composition measured
at SNS. The hygroscopic case observed during SLOPE I showed an increase in
the particle backscatter coefficient at 355 and 532 nm with relative
humidity (RH ranged between 78 and 98 %), but also a decrease in the
backscatter-related Ångström exponent (AE) and particle linear
depolarization ratio (PLDR), indicating that the particles became larger and
more spherical due to hygroscopic processes. Vertical and horizontal wind
analysis is performed by means of a co-located Doppler lidar system, in order
to evaluate the horizontal and vertical dynamics of the air masses. Finally,
the Hänel parameterization is applied to experimental data for both
stations, and we found good agreement on <i>γ</i> measured with remote
sensing (<i>γ</i><sup>532</sup> = 0.48 ± 0.01 and <i>γ</i><sup>355</sup> = 0.40 ± 0.01) with respect to the values calculated using Mie theory
(<i>γ</i><sup>532</sup> = 0.53 ± 0.02 and <i>γ</i><sup>355</sup> = 0.45 ± 0.02),
with relative differences between measurements and simulations lower than
9 % at 532 nm and 11 % at 355 nm. |
first_indexed | 2024-12-14T00:06:05Z |
format | Article |
id | doaj.art-056f15de6c7d4c639cfe5d88ddc79347 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-14T00:06:05Z |
publishDate | 2018-05-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-056f15de6c7d4c639cfe5d88ddc793472022-12-21T23:26:02ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-05-01187001701710.5194/acp-18-7001-2018Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentationA. E. Bedoya-Velásquez0A. E. Bedoya-Velásquez1A. E. Bedoya-Velásquez2F. Navas-Guzmán3M. J. Granados-Muñoz4G. Titos5G. Titos6R. Román7R. Román8R. Román9J. A. Casquero-Vera10J. A. Casquero-Vera11P. Ortiz-Amezcua12P. Ortiz-Amezcua13J. A. Benavent-Oltra14J. A. Benavent-Oltra15G. de Arruda Moreira16G. de Arruda Moreira17G. de Arruda Moreira18E. Montilla-Rosero19C. D. Hoyos20B. Artiñano21E. Coz22F. J. Olmo-Reyes23F. J. Olmo-Reyes24L. Alados-Arboledas25L. Alados-Arboledas26J. L. Guerrero-Rascado27J. L. Guerrero-Rascado28Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainSciences Faculty, Department of Physics, Universidad Nacional de Colombia, Medellín, ColombiaFederal Office of Meteorology and Climatology MeteoSwiss, Payerne, SwitzerlandRemote Sensing Laboratory/CommSensLab, Universitat Politècnica de Catalunya, Barcelona, 08034, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainInstitute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, 08034, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainGrupo de Óptica Atmosférica (GOA), Universidad de Valladolid, Paseo Belén, 7, 47011, Valladolid, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainInstitute of Research and Nuclear Energy, IPEN, São Paulo, BrazilPhysical Sciences Department, School of Science, EAFIT University, Medellín, ColombiaMinas Faculty, Department of Geosciences and Environment, Universidad Nacional de Colombia, Medellín, ColombiaCIEMAT, Environment Department, Associated Unit to CSIC on Atmospheric Pollution, Avenida Complutense 40, Madrid, SpainCIEMAT, Environment Department, Associated Unit to CSIC on Atmospheric Pollution, Avenida Complutense 40, Madrid, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainThis study focuses on the analysis of aerosol hygroscopic growth during the Sierra Nevada Lidar AerOsol Profiling Experiment (SLOPE I) campaign by using the synergy of active and passive remote sensors at the ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada, SNS). To this end, a methodology based on simultaneous measurements of aerosol profiles from an EARLINET multi-wavelength Raman lidar (RL) and relative humidity (RH) profiles obtained from a multi-instrumental approach is used. This approach is based on the combination of calibrated water vapor mixing ratio (<i>r</i>) profiles from RL and continuous temperature profiles from a microwave radiometer (MWR) for obtaining RH profiles with a reasonable vertical and temporal resolution. This methodology is validated against the traditional one that uses RH from co-located radiosounding (RS) measurements, obtaining differences in the hygroscopic growth parameter (<i>γ</i>) lower than 5 % between the methodology based on RS and the one presented here. Additionally, during the SLOPE I campaign the remote sensing methodology used for aerosol hygroscopic growth studies has been checked against Mie calculations of aerosol hygroscopic growth using in situ measurements of particle number size distribution and submicron chemical composition measured at SNS. The hygroscopic case observed during SLOPE I showed an increase in the particle backscatter coefficient at 355 and 532 nm with relative humidity (RH ranged between 78 and 98 %), but also a decrease in the backscatter-related Ångström exponent (AE) and particle linear depolarization ratio (PLDR), indicating that the particles became larger and more spherical due to hygroscopic processes. Vertical and horizontal wind analysis is performed by means of a co-located Doppler lidar system, in order to evaluate the horizontal and vertical dynamics of the air masses. Finally, the Hänel parameterization is applied to experimental data for both stations, and we found good agreement on <i>γ</i> measured with remote sensing (<i>γ</i><sup>532</sup> = 0.48 ± 0.01 and <i>γ</i><sup>355</sup> = 0.40 ± 0.01) with respect to the values calculated using Mie theory (<i>γ</i><sup>532</sup> = 0.53 ± 0.02 and <i>γ</i><sup>355</sup> = 0.45 ± 0.02), with relative differences between measurements and simulations lower than 9 % at 532 nm and 11 % at 355 nm.https://www.atmos-chem-phys.net/18/7001/2018/acp-18-7001-2018.pdf |
spellingShingle | A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez F. Navas-Guzmán M. J. Granados-Muñoz G. Titos G. Titos R. Román R. Román R. Román J. A. Casquero-Vera J. A. Casquero-Vera P. Ortiz-Amezcua P. Ortiz-Amezcua J. A. Benavent-Oltra J. A. Benavent-Oltra G. de Arruda Moreira G. de Arruda Moreira G. de Arruda Moreira E. Montilla-Rosero C. D. Hoyos B. Artiñano E. Coz F. J. Olmo-Reyes F. J. Olmo-Reyes L. Alados-Arboledas L. Alados-Arboledas J. L. Guerrero-Rascado J. L. Guerrero-Rascado Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation Atmospheric Chemistry and Physics |
title | Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation |
title_full | Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation |
title_fullStr | Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation |
title_full_unstemmed | Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation |
title_short | Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation |
title_sort | hygroscopic growth study in the framework of earlinet during the slope i campaign synergy of remote sensing and in situ instrumentation |
url | https://www.atmos-chem-phys.net/18/7001/2018/acp-18-7001-2018.pdf |
work_keys_str_mv | AT aebedoyavelasquez hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT aebedoyavelasquez hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT aebedoyavelasquez hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT fnavasguzman hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT mjgranadosmunoz hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT gtitos hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT gtitos hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT rroman hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT rroman hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT rroman hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT jacasquerovera hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT jacasquerovera hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT portizamezcua hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT portizamezcua hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT jabenaventoltra hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT jabenaventoltra hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT gdearrudamoreira hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT gdearrudamoreira hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT gdearrudamoreira hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT emontillarosero hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT cdhoyos hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT bartinano hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT ecoz hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT fjolmoreyes hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT fjolmoreyes hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT laladosarboledas hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT laladosarboledas hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT jlguerrerorascado hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation AT jlguerrerorascado hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation |