Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation

This study focuses on the analysis of aerosol hygroscopic growth during the Sierra Nevada Lidar AerOsol Profiling Experiment (SLOPE I) campaign by using the synergy of active and passive remote sensors at the ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada,...

Full description

Bibliographic Details
Main Authors: A. E. Bedoya-Velásquez, F. Navas-Guzmán, M. J. Granados-Muñoz, G. Titos, R. Román, J. A. Casquero-Vera, P. Ortiz-Amezcua, J. A. Benavent-Oltra, G. de Arruda Moreira, E. Montilla-Rosero, C. D. Hoyos, B. Artiñano, E. Coz, F. J. Olmo-Reyes, L. Alados-Arboledas, J. L. Guerrero-Rascado
Format: Article
Language:English
Published: Copernicus Publications 2018-05-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/7001/2018/acp-18-7001-2018.pdf
_version_ 1818557924840046592
author A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
F. Navas-Guzmán
M. J. Granados-Muñoz
G. Titos
G. Titos
R. Román
R. Román
R. Román
J. A. Casquero-Vera
J. A. Casquero-Vera
P. Ortiz-Amezcua
P. Ortiz-Amezcua
J. A. Benavent-Oltra
J. A. Benavent-Oltra
G. de Arruda Moreira
G. de Arruda Moreira
G. de Arruda Moreira
E. Montilla-Rosero
C. D. Hoyos
B. Artiñano
E. Coz
F. J. Olmo-Reyes
F. J. Olmo-Reyes
L. Alados-Arboledas
L. Alados-Arboledas
J. L. Guerrero-Rascado
J. L. Guerrero-Rascado
author_facet A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
F. Navas-Guzmán
M. J. Granados-Muñoz
G. Titos
G. Titos
R. Román
R. Román
R. Román
J. A. Casquero-Vera
J. A. Casquero-Vera
P. Ortiz-Amezcua
P. Ortiz-Amezcua
J. A. Benavent-Oltra
J. A. Benavent-Oltra
G. de Arruda Moreira
G. de Arruda Moreira
G. de Arruda Moreira
E. Montilla-Rosero
C. D. Hoyos
B. Artiñano
E. Coz
F. J. Olmo-Reyes
F. J. Olmo-Reyes
L. Alados-Arboledas
L. Alados-Arboledas
J. L. Guerrero-Rascado
J. L. Guerrero-Rascado
author_sort A. E. Bedoya-Velásquez
collection DOAJ
description This study focuses on the analysis of aerosol hygroscopic growth during the Sierra Nevada Lidar AerOsol Profiling Experiment (SLOPE I) campaign by using the synergy of active and passive remote sensors at the ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada, SNS). To this end, a methodology based on simultaneous measurements of aerosol profiles from an EARLINET multi-wavelength Raman lidar (RL) and relative humidity (RH) profiles obtained from a multi-instrumental approach is used. This approach is based on the combination of calibrated water vapor mixing ratio (<i>r</i>) profiles from RL and continuous temperature profiles from a microwave radiometer (MWR) for obtaining RH profiles with a reasonable vertical and temporal resolution. This methodology is validated against the traditional one that uses RH from co-located radiosounding (RS) measurements, obtaining differences in the hygroscopic growth parameter (<i>γ</i>) lower than 5 % between the methodology based on RS and the one presented here. Additionally, during the SLOPE I campaign the remote sensing methodology used for aerosol hygroscopic growth studies has been checked against Mie calculations of aerosol hygroscopic growth using in situ measurements of particle number size distribution and submicron chemical composition measured at SNS. The hygroscopic case observed during SLOPE I showed an increase in the particle backscatter coefficient at 355 and 532 nm with relative humidity (RH ranged between 78 and 98 %), but also a decrease in the backscatter-related Ångström exponent (AE) and particle linear depolarization ratio (PLDR), indicating that the particles became larger and more spherical due to hygroscopic processes. Vertical and horizontal wind analysis is performed by means of a co-located Doppler lidar system, in order to evaluate the horizontal and vertical dynamics of the air masses. Finally, the Hänel parameterization is applied to experimental data for both stations, and we found good agreement on <i>γ</i> measured with remote sensing (<i>γ</i><sup>532</sup> = 0.48&thinsp;±&thinsp;0.01 and <i>γ</i><sup>355</sup> = 0.40&thinsp;±&thinsp;0.01) with respect to the values calculated using Mie theory (<i>γ</i><sup>532</sup> = 0.53&thinsp;±&thinsp;0.02 and <i>γ</i><sup>355</sup> = 0.45&thinsp;±&thinsp;0.02), with relative differences between measurements and simulations lower than 9 % at 532 nm and 11 % at 355 nm.
first_indexed 2024-12-14T00:06:05Z
format Article
id doaj.art-056f15de6c7d4c639cfe5d88ddc79347
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-14T00:06:05Z
publishDate 2018-05-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-056f15de6c7d4c639cfe5d88ddc793472022-12-21T23:26:02ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-05-01187001701710.5194/acp-18-7001-2018Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentationA. E. Bedoya-Velásquez0A. E. Bedoya-Velásquez1A. E. Bedoya-Velásquez2F. Navas-Guzmán3M. J. Granados-Muñoz4G. Titos5G. Titos6R. Román7R. Román8R. Román9J. A. Casquero-Vera10J. A. Casquero-Vera11P. Ortiz-Amezcua12P. Ortiz-Amezcua13J. A. Benavent-Oltra14J. A. Benavent-Oltra15G. de Arruda Moreira16G. de Arruda Moreira17G. de Arruda Moreira18E. Montilla-Rosero19C. D. Hoyos20B. Artiñano21E. Coz22F. J. Olmo-Reyes23F. J. Olmo-Reyes24L. Alados-Arboledas25L. Alados-Arboledas26J. L. Guerrero-Rascado27J. L. Guerrero-Rascado28Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainSciences Faculty, Department of Physics, Universidad Nacional de Colombia, Medellín, ColombiaFederal Office of Meteorology and Climatology MeteoSwiss, Payerne, SwitzerlandRemote Sensing Laboratory/CommSensLab, Universitat Politècnica de Catalunya, Barcelona, 08034, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainInstitute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, 08034, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainGrupo de Óptica Atmosférica (GOA), Universidad de Valladolid, Paseo Belén, 7, 47011, Valladolid, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainInstitute of Research and Nuclear Energy, IPEN, São Paulo, BrazilPhysical Sciences Department, School of Science, EAFIT University, Medellín, ColombiaMinas Faculty, Department of Geosciences and Environment, Universidad Nacional de Colombia, Medellín, ColombiaCIEMAT, Environment Department, Associated Unit to CSIC on Atmospheric Pollution, Avenida Complutense 40, Madrid, SpainCIEMAT, Environment Department, Associated Unit to CSIC on Atmospheric Pollution, Avenida Complutense 40, Madrid, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, SpainDepartament of Applied Physics, University of Granada, Granada, SpainThis study focuses on the analysis of aerosol hygroscopic growth during the Sierra Nevada Lidar AerOsol Profiling Experiment (SLOPE I) campaign by using the synergy of active and passive remote sensors at the ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada, SNS). To this end, a methodology based on simultaneous measurements of aerosol profiles from an EARLINET multi-wavelength Raman lidar (RL) and relative humidity (RH) profiles obtained from a multi-instrumental approach is used. This approach is based on the combination of calibrated water vapor mixing ratio (<i>r</i>) profiles from RL and continuous temperature profiles from a microwave radiometer (MWR) for obtaining RH profiles with a reasonable vertical and temporal resolution. This methodology is validated against the traditional one that uses RH from co-located radiosounding (RS) measurements, obtaining differences in the hygroscopic growth parameter (<i>γ</i>) lower than 5 % between the methodology based on RS and the one presented here. Additionally, during the SLOPE I campaign the remote sensing methodology used for aerosol hygroscopic growth studies has been checked against Mie calculations of aerosol hygroscopic growth using in situ measurements of particle number size distribution and submicron chemical composition measured at SNS. The hygroscopic case observed during SLOPE I showed an increase in the particle backscatter coefficient at 355 and 532 nm with relative humidity (RH ranged between 78 and 98 %), but also a decrease in the backscatter-related Ångström exponent (AE) and particle linear depolarization ratio (PLDR), indicating that the particles became larger and more spherical due to hygroscopic processes. Vertical and horizontal wind analysis is performed by means of a co-located Doppler lidar system, in order to evaluate the horizontal and vertical dynamics of the air masses. Finally, the Hänel parameterization is applied to experimental data for both stations, and we found good agreement on <i>γ</i> measured with remote sensing (<i>γ</i><sup>532</sup> = 0.48&thinsp;±&thinsp;0.01 and <i>γ</i><sup>355</sup> = 0.40&thinsp;±&thinsp;0.01) with respect to the values calculated using Mie theory (<i>γ</i><sup>532</sup> = 0.53&thinsp;±&thinsp;0.02 and <i>γ</i><sup>355</sup> = 0.45&thinsp;±&thinsp;0.02), with relative differences between measurements and simulations lower than 9 % at 532 nm and 11 % at 355 nm.https://www.atmos-chem-phys.net/18/7001/2018/acp-18-7001-2018.pdf
spellingShingle A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
F. Navas-Guzmán
M. J. Granados-Muñoz
G. Titos
G. Titos
R. Román
R. Román
R. Román
J. A. Casquero-Vera
J. A. Casquero-Vera
P. Ortiz-Amezcua
P. Ortiz-Amezcua
J. A. Benavent-Oltra
J. A. Benavent-Oltra
G. de Arruda Moreira
G. de Arruda Moreira
G. de Arruda Moreira
E. Montilla-Rosero
C. D. Hoyos
B. Artiñano
E. Coz
F. J. Olmo-Reyes
F. J. Olmo-Reyes
L. Alados-Arboledas
L. Alados-Arboledas
J. L. Guerrero-Rascado
J. L. Guerrero-Rascado
Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation
Atmospheric Chemistry and Physics
title Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation
title_full Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation
title_fullStr Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation
title_full_unstemmed Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation
title_short Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation
title_sort hygroscopic growth study in the framework of earlinet during the slope i campaign synergy of remote sensing and in situ instrumentation
url https://www.atmos-chem-phys.net/18/7001/2018/acp-18-7001-2018.pdf
work_keys_str_mv AT aebedoyavelasquez hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT aebedoyavelasquez hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT aebedoyavelasquez hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT fnavasguzman hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT mjgranadosmunoz hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT gtitos hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT gtitos hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT rroman hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT rroman hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT rroman hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT jacasquerovera hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT jacasquerovera hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT portizamezcua hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT portizamezcua hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT jabenaventoltra hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT jabenaventoltra hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT gdearrudamoreira hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT gdearrudamoreira hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT gdearrudamoreira hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT emontillarosero hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT cdhoyos hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT bartinano hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT ecoz hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT fjolmoreyes hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT fjolmoreyes hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT laladosarboledas hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT laladosarboledas hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT jlguerrerorascado hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation
AT jlguerrerorascado hygroscopicgrowthstudyintheframeworkofearlinetduringtheslopeicampaignsynergyofremotesensingandinsituinstrumentation