Summary: | In this paper, the grain-refining effect of Al-Nb-B refiner in wrought Al alloys and corresponding refining mechanism was investigated using phase-field simulation and experiment methods. Through experimental statistics and data correction, the seed radius introduced by Al-Nb-B refiner into Al alloy melt and the corresponding quantitative density distribution data were obtained, and a seed density model (SDM) model has been established. On this basis, a multi-phase field method (MPFM) combined with the calculation of phase diagram (CALPHAD) has been employed to simulate the α -Al grain evolution of Al-Mg-Si alloy during the solidification process with the help of thermodynamic database. Experimental studies showed that the addition of 0.03 wt% Nb (Adding by Al-1.93Nb-0.22B master alloy) significantly reduced the grain size from 956.4 μ m to about 219.4 μ m, and the grain size slowly decreased to 192.3 μ m by continuing to add refiner to 0.09 wt% Nb. Meanwhile, the simulation results demonstrated that after the addition of refiners, dendrite morphology transformed from the relatively developed dendrites with secondary and tertiary dendrites to a fine and uniform equiaxed shape. Simulation and experimental studies showed quantitative agreement. In addition, the results also prove that the addition of Al-Nb-B refiner can provide high-quality and stable heterogeneous nucleation particles.
|