Synthesis, characterization and antibacterial study of Ag–Au Bi-metallic nanocomposite by bioreduction using piper betle leaf extract

Biological reduction method using plant extract for the synthesis of metal and metal oxides are attracted much to the researchers due to its simplicity, which integrates the chemical technology. The special attention is given to the green synthesis of nanoparticles by easily available plants with ec...

Full description

Bibliographic Details
Main Authors: Arunkumar Lagashetty, Sangappa K. Ganiger, Shashidhar
Format: Article
Language:English
Published: Elsevier 2019-12-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844019364540
Description
Summary:Biological reduction method using plant extract for the synthesis of metal and metal oxides are attracted much to the researchers due to its simplicity, which integrates the chemical technology. The special attention is given to the green synthesis of nanoparticles by easily available plants with eco-friendly system compared to other conventional methods. Silver-gold nanocomposite (Ag–Au NCp's) is synthesized by biological reduction of silver nitrate and gold chloride with biological reduction method. These metal salts are simultaneously reduced by betle leaf extract to form respective silver and gold nanocomposite. The structure and morphology of as prepared Ag–Au NCp's sample was characterized by employing powder X-ray diffraction (XRD) tool and by Scanning Electron Micrograph (SEM) tool respectively. Fourier Transform infrared (FTIR) spectral study was undertaken to know the bonding in the prepared silver sample. Energy dispersive X-ray analysis (EDX) study was undertaken to know the formation Ag–Au NCp's. Antibacterial studies are undertaken for the said nanocomposite to know its activity against bacteria.
ISSN:2405-8440