Analytical and Numerical Modelling of Creep Deformation of Viscoelastic Thick-Walled Cylinder with Fractional Maxwell Model

The deformation of a thick-walled cylinder under pressure is a classic elastic mechanics problem with various engineering applications. In this study, the displacement of a viscoelastic thick-walled cylinder under internal pressure is investigated via analytical as well as numerical modelling. The f...

Full description

Bibliographic Details
Main Authors: Xiang Ding, Na Chen, Yan Zhang, Fan Zhang
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/17/4849
Description
Summary:The deformation of a thick-walled cylinder under pressure is a classic elastic mechanics problem with various engineering applications. In this study, the displacement of a viscoelastic thick-walled cylinder under internal pressure is investigated via analytical as well as numerical modelling. The fractional Maxwell model is initially introduced to describe the creep deformation of high-strength Q460 steel. Subsequently, an analytical solution to the creep deformation of the thick-walled cylinder under both internal and external pressures is deduced with the corresponding principle. The analytical solution is examined with a numerical simulation that incorporates the fractional Maxwell model by a user-defined subroutine. The numerical simulation agrees well with the analytical solution. The limitations of the current study are also discussed.
ISSN:1996-1944