Investigation of Mutual Behavior of Stochastic Normally Distributed Processes with Additive Amplitude Randomization

The joint analysis of several signals is essential for better understanding of the principles underlying the complex systems dynamics. We consider three methods for estimating the stability of the relative dynamics of two surrogate processes. The first one is based on calculation of the phase synchr...

Full description

Bibliographic Details
Main Authors: S. A. Pyko, N. S. Pyko, O. A. Markelov, Yu. D. Uljanitski, M. I. Bogachev
Format: Article
Language:Russian
Published: Saint Petersburg Electrotechnical University "LETI" 2017-12-01
Series:Известия высших учебных заведений России: Радиоэлектроника
Subjects:
Online Access:https://re.eltech.ru/jour/article/view/199
_version_ 1797874515226656768
author S. A. Pyko
N. S. Pyko
O. A. Markelov
Yu. D. Uljanitski
M. I. Bogachev
author_facet S. A. Pyko
N. S. Pyko
O. A. Markelov
Yu. D. Uljanitski
M. I. Bogachev
author_sort S. A. Pyko
collection DOAJ
description The joint analysis of several signals is essential for better understanding of the principles underlying the complex systems dynamics. We consider three methods for estimating the stability of the relative dynamics of two surrogate processes. The first one is based on calculation of the phase synchronization coefficient S and the second one on estimation of the cross-conditional entropy CE. The third approach uses the average value of the coherence function of the two processes - the coherence coefficient C. We study the sensitivity of these methods in relation to the amplitude randomization between test processes. All methods are applied to analyze two types of normally distributed random stochastic processes, with either short-term correlations characterized by finite correlation time or long-term correlations with theoretically infinite correlation time characterized by Hurst exponents. In our research, we generate two copies of the surrogate process with either short-term or long-term correlations. Then we attribute the additive white noise to one of these copies at first with the uniform distribution and then with the Gaussian distribution and the same variance. Next, we calculate the coefficients that characterize the mutual behavior of the two test processes and estimate their statistical characteristics. It is found that the sensitivity of all methods to Gaussian additive noise is higher than that of uniform one. We show that processes with long-term correlation react more actively to the additive amplitude noise then processes with short-term correlation. The influence of Hurst exponent value for the processes with long-term correlation is expressed for the coefficients S and C. The influence of correlation time is demonstrated for the coefficients S and СЕ. Our results may be useful in investigations of the mutual dynamics of two processes belonging to the considered types.
first_indexed 2024-04-10T01:33:17Z
format Article
id doaj.art-05857d1260734f6cb6bd179c1095acdc
institution Directory Open Access Journal
issn 1993-8985
2658-4794
language Russian
last_indexed 2024-04-10T01:33:17Z
publishDate 2017-12-01
publisher Saint Petersburg Electrotechnical University "LETI"
record_format Article
series Известия высших учебных заведений России: Радиоэлектроника
spelling doaj.art-05857d1260734f6cb6bd179c1095acdc2023-03-13T09:20:22ZrusSaint Petersburg Electrotechnical University "LETI"Известия высших учебных заведений России: Радиоэлектроника1993-89852658-47942017-12-01062127198Investigation of Mutual Behavior of Stochastic Normally Distributed Processes with Additive Amplitude RandomizationS. A. Pyko0N. S. Pyko1O. A. Markelov2Yu. D. Uljanitski3M. I. Bogachev4Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)The joint analysis of several signals is essential for better understanding of the principles underlying the complex systems dynamics. We consider three methods for estimating the stability of the relative dynamics of two surrogate processes. The first one is based on calculation of the phase synchronization coefficient S and the second one on estimation of the cross-conditional entropy CE. The third approach uses the average value of the coherence function of the two processes - the coherence coefficient C. We study the sensitivity of these methods in relation to the amplitude randomization between test processes. All methods are applied to analyze two types of normally distributed random stochastic processes, with either short-term correlations characterized by finite correlation time or long-term correlations with theoretically infinite correlation time characterized by Hurst exponents. In our research, we generate two copies of the surrogate process with either short-term or long-term correlations. Then we attribute the additive white noise to one of these copies at first with the uniform distribution and then with the Gaussian distribution and the same variance. Next, we calculate the coefficients that characterize the mutual behavior of the two test processes and estimate their statistical characteristics. It is found that the sensitivity of all methods to Gaussian additive noise is higher than that of uniform one. We show that processes with long-term correlation react more actively to the additive amplitude noise then processes with short-term correlation. The influence of Hurst exponent value for the processes with long-term correlation is expressed for the coefficients S and C. The influence of correlation time is demonstrated for the coefficients S and СЕ. Our results may be useful in investigations of the mutual dynamics of two processes belonging to the considered types.https://re.eltech.ru/jour/article/view/199коэффициент фазовой синхронизациивремя корреляциипоказатель херстафункция когерентностиотносительная условная энтропия
spellingShingle S. A. Pyko
N. S. Pyko
O. A. Markelov
Yu. D. Uljanitski
M. I. Bogachev
Investigation of Mutual Behavior of Stochastic Normally Distributed Processes with Additive Amplitude Randomization
Известия высших учебных заведений России: Радиоэлектроника
коэффициент фазовой синхронизации
время корреляции
показатель херста
функция когерентности
относительная условная энтропия
title Investigation of Mutual Behavior of Stochastic Normally Distributed Processes with Additive Amplitude Randomization
title_full Investigation of Mutual Behavior of Stochastic Normally Distributed Processes with Additive Amplitude Randomization
title_fullStr Investigation of Mutual Behavior of Stochastic Normally Distributed Processes with Additive Amplitude Randomization
title_full_unstemmed Investigation of Mutual Behavior of Stochastic Normally Distributed Processes with Additive Amplitude Randomization
title_short Investigation of Mutual Behavior of Stochastic Normally Distributed Processes with Additive Amplitude Randomization
title_sort investigation of mutual behavior of stochastic normally distributed processes with additive amplitude randomization
topic коэффициент фазовой синхронизации
время корреляции
показатель херста
функция когерентности
относительная условная энтропия
url https://re.eltech.ru/jour/article/view/199
work_keys_str_mv AT sapyko investigationofmutualbehaviorofstochasticnormallydistributedprocesseswithadditiveamplituderandomization
AT nspyko investigationofmutualbehaviorofstochasticnormallydistributedprocesseswithadditiveamplituderandomization
AT oamarkelov investigationofmutualbehaviorofstochasticnormallydistributedprocesseswithadditiveamplituderandomization
AT yuduljanitski investigationofmutualbehaviorofstochasticnormallydistributedprocesseswithadditiveamplituderandomization
AT mibogachev investigationofmutualbehaviorofstochasticnormallydistributedprocesseswithadditiveamplituderandomization