A Word-Embedding-Based Steganalysis Method for Linguistic Steganography via Synonym Substitution

The development of steganography technology threatens the security of privacy information in smart campus. To prevent privacy disclosure, a linguistic steganalysis method based on word embedding is proposed to detect the privacy information hidden in synonyms in the texts. With the continuous Skipgr...

Full description

Bibliographic Details
Main Authors: Lingyun Xiang, Jingmin Yu, Chunfang Yang, Daojian Zeng, Xiaobo Shen
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8510794/
Description
Summary:The development of steganography technology threatens the security of privacy information in smart campus. To prevent privacy disclosure, a linguistic steganalysis method based on word embedding is proposed to detect the privacy information hidden in synonyms in the texts. With the continuous Skipgram language model, each synonym and words in its context are represented as word embeddings, which aims to encode semantic meanings of words into low-dimensional dense vectors. The context fitness, which characterizes the suitability of a synonym by its semantic correlations with context words, is effectively estimated by their corresponding word embeddings and weighted by TF-IDF values of context words. By analyzing the differences of context fitness values of synonyms in the same synonym set and the differences of those in the cover and stego text, three features are extracted and fed into a support vector machine classifier for steganalysis task. The experimental results show that the proposed steganalysis improves the average F-value at least 4.8% over two baselines. In addition, the detection performance can be further improved by learning better word embeddings.
ISSN:2169-3536