Ultrahigh-Pressure Mineral Inclusions in a Crustal Granite: Evidence for a Novel Transcrustal Transport Mechanism

Spherical crystals in minerals from prismatine-bearing rock from Waldheim, including ultrahigh-pressure (UHP) minerals such as stishovite and coesite, were previously described in uncommon crustal environments. To determine if this was an outlier phenomenon, we searched for equivalent inclusions in...

Full description

Bibliographic Details
Main Authors: Rainer Thomas, Paul Davidson, Adolf Rericha, Ulrich Recknagel
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Geosciences
Subjects:
Online Access:https://www.mdpi.com/2076-3263/13/4/94
Description
Summary:Spherical crystals in minerals from prismatine-bearing rock from Waldheim, including ultrahigh-pressure (UHP) minerals such as stishovite and coesite, were previously described in uncommon crustal environments. To determine if this was an outlier phenomenon, we searched for equivalent inclusions in other rocks, which we indeed discovered in a Variscan tin-bearing granite sensu stricto from the Erzgebirge/Germany. The identification of more examples of this phenomenon implies a novel, very rapid transcrustal transport mechanism, which, however, is not unique. We demonstrate the unusual occurrence of UHP minerals (moissanite, diamond, lonsdaleite, stishovite, coesite, kumdykolite, and cristobalite-II) in topaz the investigated granitic samples, which reflects the direct interaction of mantle and crust via supercritical fluids or extremely volatile-rich melts. Mostly, the UHP minerals we recognized occur as tiny inclusions in moissanite. The trapping by this mineral prevents a fast reaction in an exogenous environment.
ISSN:2076-3263