Summary: | The T347S polymorphism in the human apolipoprotein (apo) A-IV gene is present at high frequencies among all the world's populations. Carriers of a 347S allele exhibit faster clearance of triglyceride-rich lipoproteins, greater adiposity, and increased risk for developing atherosclerosis, which suggests that this conservative amino acid substitution alters the structure of apo A-IV. Herein we have used spectroscopic and surface chemistry techniques to examine the structure, stability, and interfacial properties of the apo A-IV 347S isoprotein. Circular dichroism spectroscopy revealed that the 347S isoprotein has similar α-helical structure but lower thermodynamic stability than the 347T isoprotein. Fluorescence spectroscopy found that the 347S isoprotein exhibits an enhanced tyrosine emission and reduced tyrosine→tryptophan energy transfer, and second derivative UV absorption spectra noted increased tyrosine exposure, suggesting that the 347S isoprotein adopts a looser tertiary conformation. Surface chemistry studies found that although the 347S isoprotein bound rapidly to the lipid interface, it has a lower interfacial exclusion pressure and lower elastic modulus than the 347T isoprotein. Together, these observations establish that the T347S substitution alters the conformation of apo A-IV and lowers its interfacial activity—changes that could account for the effect of this polymorphism on postprandial lipid metabolism.
|