Hankel Transform of the Type 2 (<i>p</i>,<i>q</i>)-Analogue of <i>r</i>-Dowling Numbers
In this paper, type 2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semanti...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/10/4/343 |
_version_ | 1797506563649306624 |
---|---|
author | Roberto Corcino Mary Ann Ritzell Vega Amerah Dibagulun |
author_facet | Roberto Corcino Mary Ann Ritzell Vega Amerah Dibagulun |
author_sort | Roberto Corcino |
collection | DOAJ |
description | In this paper, type 2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogues of the <i>r</i>-Whitney numbers of the second kind is defined and a combinatorial interpretation in the context of the <i>A</i>-tableaux is given. Moreover, some convolution-type identities, which are useful in deriving the Hankel transform of the type 2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogue of the <i>r</i>-Whitney numbers of the second kind are obtained. Finally, the Hankel transform of the type 2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogue of the <i>r</i>-Dowling numbers are established. |
first_indexed | 2024-03-10T04:34:19Z |
format | Article |
id | doaj.art-05c4ea1162484fc7a8cf8cc505db0a44 |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-03-10T04:34:19Z |
publishDate | 2021-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-05c4ea1162484fc7a8cf8cc505db0a442023-11-23T03:50:22ZengMDPI AGAxioms2075-16802021-12-0110434310.3390/axioms10040343Hankel Transform of the Type 2 (<i>p</i>,<i>q</i>)-Analogue of <i>r</i>-Dowling NumbersRoberto Corcino0Mary Ann Ritzell Vega1Amerah Dibagulun2Research Institute for Computational Mathematics and Physics, Cebu Normal University, Cebu City 6000, PhilippinesDepartment of Mathematics and Statistics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, PhilippinesDepartment of Mathematics, Mindanao State University-Main Campus, Marawi City 9700, PhilippinesIn this paper, type 2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogues of the <i>r</i>-Whitney numbers of the second kind is defined and a combinatorial interpretation in the context of the <i>A</i>-tableaux is given. Moreover, some convolution-type identities, which are useful in deriving the Hankel transform of the type 2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogue of the <i>r</i>-Whitney numbers of the second kind are obtained. Finally, the Hankel transform of the type 2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogue of the <i>r</i>-Dowling numbers are established.https://www.mdpi.com/2075-1680/10/4/343<i>r</i>-Whitney numbers<i>r</i>-Dowling numbersA-tableauxconvolution identitiesbinomial transformHankel transform |
spellingShingle | Roberto Corcino Mary Ann Ritzell Vega Amerah Dibagulun Hankel Transform of the Type 2 (<i>p</i>,<i>q</i>)-Analogue of <i>r</i>-Dowling Numbers Axioms <i>r</i>-Whitney numbers <i>r</i>-Dowling numbers A-tableaux convolution identities binomial transform Hankel transform |
title | Hankel Transform of the Type 2 (<i>p</i>,<i>q</i>)-Analogue of <i>r</i>-Dowling Numbers |
title_full | Hankel Transform of the Type 2 (<i>p</i>,<i>q</i>)-Analogue of <i>r</i>-Dowling Numbers |
title_fullStr | Hankel Transform of the Type 2 (<i>p</i>,<i>q</i>)-Analogue of <i>r</i>-Dowling Numbers |
title_full_unstemmed | Hankel Transform of the Type 2 (<i>p</i>,<i>q</i>)-Analogue of <i>r</i>-Dowling Numbers |
title_short | Hankel Transform of the Type 2 (<i>p</i>,<i>q</i>)-Analogue of <i>r</i>-Dowling Numbers |
title_sort | hankel transform of the type 2 i p i i q i analogue of i r i dowling numbers |
topic | <i>r</i>-Whitney numbers <i>r</i>-Dowling numbers A-tableaux convolution identities binomial transform Hankel transform |
url | https://www.mdpi.com/2075-1680/10/4/343 |
work_keys_str_mv | AT robertocorcino hankeltransformofthetype2ipiiqianalogueofiridowlingnumbers AT maryannritzellvega hankeltransformofthetype2ipiiqianalogueofiridowlingnumbers AT amerahdibagulun hankeltransformofthetype2ipiiqianalogueofiridowlingnumbers |