Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish
μ-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly conv...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-11-01
|
Series: | Journal of Lipid Research |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0022227520322847 |
_version_ | 1818408688517382144 |
---|---|
author | Lindsey T. Lelieveld Mina Mirzaian Chi-Lin Kuo Marta Artola Maria J. Ferraz Remco E.A. Peter Hisako Akiyama Peter Greimel Richard J.B.H.N. van den Berg Herman S. Overkleeft Rolf G. Boot Annemarie H. Meijer Johannes M.F.G. Aerts |
author_facet | Lindsey T. Lelieveld Mina Mirzaian Chi-Lin Kuo Marta Artola Maria J. Ferraz Remco E.A. Peter Hisako Akiyama Peter Greimel Richard J.B.H.N. van den Berg Herman S. Overkleeft Rolf G. Boot Annemarie H. Meijer Johannes M.F.G. Aerts |
author_sort | Lindsey T. Lelieveld |
collection | DOAJ |
description | μ-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the role of zebrafish Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafish (Danio rerio), which are able to survive total Gba1 deficiency. We developed Gba1 (gba1−/−), Gba2 (gba2−/−), and double (gba1−/−:gba2−/−) zebrafish knockouts using CRISPR/Cas9 and explored the effects of both genetic and pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolites confirmed enzyme deficiency. GlcSph increased in gba1−/− larvae (0.09 pmol/fish) but did not increase more in gba1−/−:gba2−/− larvae. GlcCer was comparable in gba1−/− and WT larvae but increased in gba2−/− and gba1−/−:gba2−/− larvae. Independent of Gba1 status, GlcChol was low in all gba2−/− larvae (0.05 vs. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph. Inhibition of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of GCS and Gba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish larvae offer an attractive model to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified distinguishing characteristics of zebrafish Gba2 deficiency. |
first_indexed | 2024-12-14T09:47:42Z |
format | Article |
id | doaj.art-05ce0c35bb594489bd17fa37e18c9942 |
institution | Directory Open Access Journal |
issn | 0022-2275 |
language | English |
last_indexed | 2024-12-14T09:47:42Z |
publishDate | 2019-11-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Lipid Research |
spelling | doaj.art-05ce0c35bb594489bd17fa37e18c99422022-12-21T23:07:35ZengElsevierJournal of Lipid Research0022-22752019-11-01601118511867Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafishLindsey T. Lelieveld0Mina Mirzaian1Chi-Lin Kuo2Marta Artola3Maria J. Ferraz4Remco E.A. Peter5Hisako Akiyama6Peter Greimel7Richard J.B.H.N. van den Berg8Herman S. Overkleeft9Rolf G. Boot10Annemarie H. Meijer11Johannes M.F.G. Aerts12Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands; Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsCenter for Brain Science, RIKEN, Wako, JapanCenter for Brain Science, RIKEN, Wako, JapanBio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The NetherlandsBio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsInstitute of Biology Leiden, Leiden University, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands; To whom correspondence should be addressed.μ-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the role of zebrafish Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafish (Danio rerio), which are able to survive total Gba1 deficiency. We developed Gba1 (gba1−/−), Gba2 (gba2−/−), and double (gba1−/−:gba2−/−) zebrafish knockouts using CRISPR/Cas9 and explored the effects of both genetic and pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolites confirmed enzyme deficiency. GlcSph increased in gba1−/− larvae (0.09 pmol/fish) but did not increase more in gba1−/−:gba2−/− larvae. GlcCer was comparable in gba1−/− and WT larvae but increased in gba2−/− and gba1−/−:gba2−/− larvae. Independent of Gba1 status, GlcChol was low in all gba2−/− larvae (0.05 vs. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph. Inhibition of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of GCS and Gba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish larvae offer an attractive model to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified distinguishing characteristics of zebrafish Gba2 deficiency.http://www.sciencedirect.com/science/article/pii/S0022227520322847Gaucher diseasesphingolipidslysosphingolipidslipid metabolism |
spellingShingle | Lindsey T. Lelieveld Mina Mirzaian Chi-Lin Kuo Marta Artola Maria J. Ferraz Remco E.A. Peter Hisako Akiyama Peter Greimel Richard J.B.H.N. van den Berg Herman S. Overkleeft Rolf G. Boot Annemarie H. Meijer Johannes M.F.G. Aerts Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish Journal of Lipid Research Gaucher disease sphingolipids lysosphingolipids lipid metabolism |
title | Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish |
title_full | Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish |
title_fullStr | Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish |
title_full_unstemmed | Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish |
title_short | Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish |
title_sort | role of μ glucosidase 2 in aberrant glycosphingolipid metabolism model of glucocerebrosidase deficiency in zebrafish |
topic | Gaucher disease sphingolipids lysosphingolipids lipid metabolism |
url | http://www.sciencedirect.com/science/article/pii/S0022227520322847 |
work_keys_str_mv | AT lindseytlelieveld roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT minamirzaian roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT chilinkuo roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT martaartola roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT mariajferraz roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT remcoeapeter roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT hisakoakiyama roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT petergreimel roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT richardjbhnvandenberg roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT hermansoverkleeft roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT rolfgboot roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT annemariehmeijer roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish AT johannesmfgaerts roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish |