Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish

μ-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly conv...

Full description

Bibliographic Details
Main Authors: Lindsey T. Lelieveld, Mina Mirzaian, Chi-Lin Kuo, Marta Artola, Maria J. Ferraz, Remco E.A. Peter, Hisako Akiyama, Peter Greimel, Richard J.B.H.N. van den Berg, Herman S. Overkleeft, Rolf G. Boot, Annemarie H. Meijer, Johannes M.F.G. Aerts
Format: Article
Language:English
Published: Elsevier 2019-11-01
Series:Journal of Lipid Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0022227520322847
_version_ 1818408688517382144
author Lindsey T. Lelieveld
Mina Mirzaian
Chi-Lin Kuo
Marta Artola
Maria J. Ferraz
Remco E.A. Peter
Hisako Akiyama
Peter Greimel
Richard J.B.H.N. van den Berg
Herman S. Overkleeft
Rolf G. Boot
Annemarie H. Meijer
Johannes M.F.G. Aerts
author_facet Lindsey T. Lelieveld
Mina Mirzaian
Chi-Lin Kuo
Marta Artola
Maria J. Ferraz
Remco E.A. Peter
Hisako Akiyama
Peter Greimel
Richard J.B.H.N. van den Berg
Herman S. Overkleeft
Rolf G. Boot
Annemarie H. Meijer
Johannes M.F.G. Aerts
author_sort Lindsey T. Lelieveld
collection DOAJ
description μ-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the role of zebrafish Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafish (Danio rerio), which are able to survive total Gba1 deficiency. We developed Gba1 (gba1−/−), Gba2 (gba2−/−), and double (gba1−/−:gba2−/−) zebrafish knockouts using CRISPR/Cas9 and explored the effects of both genetic and pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolites confirmed enzyme deficiency. GlcSph increased in gba1−/− larvae (0.09 pmol/fish) but did not increase more in gba1−/−:gba2−/− larvae. GlcCer was comparable in gba1−/− and WT larvae but increased in gba2−/− and gba1−/−:gba2−/− larvae. Independent of Gba1 status, GlcChol was low in all gba2−/− larvae (0.05 vs. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph. Inhibition of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of GCS and Gba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish larvae offer an attractive model to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified distinguishing characteristics of zebrafish Gba2 deficiency.
first_indexed 2024-12-14T09:47:42Z
format Article
id doaj.art-05ce0c35bb594489bd17fa37e18c9942
institution Directory Open Access Journal
issn 0022-2275
language English
last_indexed 2024-12-14T09:47:42Z
publishDate 2019-11-01
publisher Elsevier
record_format Article
series Journal of Lipid Research
spelling doaj.art-05ce0c35bb594489bd17fa37e18c99422022-12-21T23:07:35ZengElsevierJournal of Lipid Research0022-22752019-11-01601118511867Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafishLindsey T. Lelieveld0Mina Mirzaian1Chi-Lin Kuo2Marta Artola3Maria J. Ferraz4Remco E.A. Peter5Hisako Akiyama6Peter Greimel7Richard J.B.H.N. van den Berg8Herman S. Overkleeft9Rolf G. Boot10Annemarie H. Meijer11Johannes M.F.G. Aerts12Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands; Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsCenter for Brain Science, RIKEN, Wako, JapanCenter for Brain Science, RIKEN, Wako, JapanBio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The NetherlandsBio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The NetherlandsInstitute of Biology Leiden, Leiden University, Leiden, The NetherlandsDepartment of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands; To whom correspondence should be addressed.μ-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the role of zebrafish Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafish (Danio rerio), which are able to survive total Gba1 deficiency. We developed Gba1 (gba1−/−), Gba2 (gba2−/−), and double (gba1−/−:gba2−/−) zebrafish knockouts using CRISPR/Cas9 and explored the effects of both genetic and pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolites confirmed enzyme deficiency. GlcSph increased in gba1−/− larvae (0.09 pmol/fish) but did not increase more in gba1−/−:gba2−/− larvae. GlcCer was comparable in gba1−/− and WT larvae but increased in gba2−/− and gba1−/−:gba2−/− larvae. Independent of Gba1 status, GlcChol was low in all gba2−/− larvae (0.05 vs. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph. Inhibition of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of GCS and Gba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish larvae offer an attractive model to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified distinguishing characteristics of zebrafish Gba2 deficiency.http://www.sciencedirect.com/science/article/pii/S0022227520322847Gaucher diseasesphingolipidslysosphingolipidslipid metabolism
spellingShingle Lindsey T. Lelieveld
Mina Mirzaian
Chi-Lin Kuo
Marta Artola
Maria J. Ferraz
Remco E.A. Peter
Hisako Akiyama
Peter Greimel
Richard J.B.H.N. van den Berg
Herman S. Overkleeft
Rolf G. Boot
Annemarie H. Meijer
Johannes M.F.G. Aerts
Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish
Journal of Lipid Research
Gaucher disease
sphingolipids
lysosphingolipids
lipid metabolism
title Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish
title_full Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish
title_fullStr Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish
title_full_unstemmed Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish
title_short Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish
title_sort role of μ glucosidase 2 in aberrant glycosphingolipid metabolism model of glucocerebrosidase deficiency in zebrafish
topic Gaucher disease
sphingolipids
lysosphingolipids
lipid metabolism
url http://www.sciencedirect.com/science/article/pii/S0022227520322847
work_keys_str_mv AT lindseytlelieveld roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT minamirzaian roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT chilinkuo roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT martaartola roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT mariajferraz roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT remcoeapeter roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT hisakoakiyama roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT petergreimel roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT richardjbhnvandenberg roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT hermansoverkleeft roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT rolfgboot roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT annemariehmeijer roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish
AT johannesmfgaerts roleofmglucosidase2inaberrantglycosphingolipidmetabolismmodelofglucocerebrosidasedeficiencyinzebrafish