Assessing the In Vivo Biocompatibility of Molecularly Imprinted Polymer Nanoparticles

Molecularly imprinted polymer nanoparticles (nanoMIPs) are high affinity synthetic receptors which show promise as imaging and therapeutic agents. Comprehensive analysis of the in vivo behaviour of nanoMIPs must be performed before they can be considered for clinical applications. This work reports...

Full description

Bibliographic Details
Main Authors: Samr Kassem, Stanislav S. Piletsky, Hasan Yesilkaya, Ozcan Gazioglu, Medhanie Habtom, Francesco Canfarotta, Elena Piletska, Alan C. Spivey, Eric O. Aboagye, Sergey A. Piletsky
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/21/4582
Description
Summary:Molecularly imprinted polymer nanoparticles (nanoMIPs) are high affinity synthetic receptors which show promise as imaging and therapeutic agents. Comprehensive analysis of the in vivo behaviour of nanoMIPs must be performed before they can be considered for clinical applications. This work reports the solid-phase synthesis of nanoMIPs and an investigation of their biodistribution, clearance and cytotoxicity in a rat model following both intravenous and oral administration. These nanoMIPs were found in each harvested tissue type, including brain tissue, implying their ability to cross the blood–brain barrier. The nanoMIPs were cleared from the body via both faeces and urine. Furthermore, we describe an immunogenicity study in mice, demonstrating that nanoMIPs specific for a cell surface protein showed moderate adjuvant properties, whilst those imprinted for a scrambled peptide showed no such behaviour. Given their ability to access all tissue types and their relatively low cytotoxicity, these results pave the way for in vivo applications of nanoMIPs.
ISSN:2073-4360