Measurement Back-Action in Quantum Point-Contact Charge Sensing

Charge sensing with quantum point-contacts (QPCs) is a technique widely used in semiconductor quantum-dot research. Understanding the physics of this measurement process, as well as finding ways of suppressing unwanted measurement back-action, are therefore both desirable. In this article, we presen...

Full description

Bibliographic Details
Main Authors: Bruno Küng, Simon Gustavsson, Theodore Choi, Ivan Shorubalko, Oliver Pfäffli, Fabian Hassler, Gianni Blatter, Matthias Reinwald, Werner Wegscheider, Silke Schön, Thomas Ihn, Klaus Ensslin
Format: Article
Language:English
Published: MDPI AG 2010-06-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/12/7/1721/
Description
Summary:Charge sensing with quantum point-contacts (QPCs) is a technique widely used in semiconductor quantum-dot research. Understanding the physics of this measurement process, as well as finding ways of suppressing unwanted measurement back-action, are therefore both desirable. In this article, we present experimental studies targeting these two goals. Firstly, we measure the effect of a QPC on electron tunneling between two InAs quantum dots, and show that a model based on the QPC’s shot-noise can account for it. Secondly, we discuss the possibility of lowering the measurement current (and thus the back-action) used for charge sensing by correlating the signals of two independent measurement channels. The performance of this method is tested in a typical experimental setup.
ISSN:1099-4300