Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced Obesity
For more than a decade, there has been a wide debate about the branched-chain amino acids (BCAA) leucine, valine, and isoleucine, with, on the one hand, the supporters of their anabolic effects and, on the other hand, those who suspect them of promoting insulin resistance. Indeed, the role of leucin...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Nutrients |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-6643/15/1/68 |
_version_ | 1797406547774537728 |
---|---|
author | Jean-Pascal De Bandt Xavier Coumoul Robert Barouki |
author_facet | Jean-Pascal De Bandt Xavier Coumoul Robert Barouki |
author_sort | Jean-Pascal De Bandt |
collection | DOAJ |
description | For more than a decade, there has been a wide debate about the branched-chain amino acids (BCAA) leucine, valine, and isoleucine, with, on the one hand, the supporters of their anabolic effects and, on the other hand, those who suspect them of promoting insulin resistance. Indeed, the role of leucine in the postprandial activation of protein synthesis has been clearly established, even though supplementation studies aimed at taking advantage of this property are rather disappointing. Furthermore, there is ample evidence of an association between the elevation of their plasma concentrations and insulin resistance or the risk of developing type 2 diabetes, although there are many confounding factors, starting with the level of animal protein consumption. After a summary of their metabolism and anabolic properties, we analyze in this review the factors likely to increase the plasma concentrations of BCAAs, including insulin-resistance. After an analysis of supplementation or restriction studies in search of a direct role of BCAAs in insulin resistance, we discuss an indirect role through some of their metabolites: branched-chain keto acids, C3 and C5 acylcarnitines, and hydroxyisobutyrate. Overall, given the importance of insulin in the metabolism of these amino acids, it is very likely that small alterations in insulin sensitivity are responsible for a reduction in their catabolism long before the onset of impaired glucose tolerance. |
first_indexed | 2024-03-09T03:28:00Z |
format | Article |
id | doaj.art-05e434dcd76a4bd48e1170088f022d8f |
institution | Directory Open Access Journal |
issn | 2072-6643 |
language | English |
last_indexed | 2024-03-09T03:28:00Z |
publishDate | 2022-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Nutrients |
spelling | doaj.art-05e434dcd76a4bd48e1170088f022d8f2023-12-03T14:59:23ZengMDPI AGNutrients2072-66432022-12-011516810.3390/nu15010068Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced ObesityJean-Pascal De Bandt0Xavier Coumoul1Robert Barouki2INSERM UMR-S 1124-T3S, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers, Faculté des Sciences, Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, 75006 Paris, FranceINSERM UMR-S 1124-T3S, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers, Faculté des Sciences, Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, 75006 Paris, FranceINSERM UMR-S 1124-T3S, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers, Faculté des Sciences, Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, 75006 Paris, FranceFor more than a decade, there has been a wide debate about the branched-chain amino acids (BCAA) leucine, valine, and isoleucine, with, on the one hand, the supporters of their anabolic effects and, on the other hand, those who suspect them of promoting insulin resistance. Indeed, the role of leucine in the postprandial activation of protein synthesis has been clearly established, even though supplementation studies aimed at taking advantage of this property are rather disappointing. Furthermore, there is ample evidence of an association between the elevation of their plasma concentrations and insulin resistance or the risk of developing type 2 diabetes, although there are many confounding factors, starting with the level of animal protein consumption. After a summary of their metabolism and anabolic properties, we analyze in this review the factors likely to increase the plasma concentrations of BCAAs, including insulin-resistance. After an analysis of supplementation or restriction studies in search of a direct role of BCAAs in insulin resistance, we discuss an indirect role through some of their metabolites: branched-chain keto acids, C3 and C5 acylcarnitines, and hydroxyisobutyrate. Overall, given the importance of insulin in the metabolism of these amino acids, it is very likely that small alterations in insulin sensitivity are responsible for a reduction in their catabolism long before the onset of impaired glucose tolerance.https://www.mdpi.com/2072-6643/15/1/68leucinevalineisoleucinetype 2 diabetesglucose toleranceprotein consumption |
spellingShingle | Jean-Pascal De Bandt Xavier Coumoul Robert Barouki Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced Obesity Nutrients leucine valine isoleucine type 2 diabetes glucose tolerance protein consumption |
title | Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced Obesity |
title_full | Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced Obesity |
title_fullStr | Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced Obesity |
title_full_unstemmed | Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced Obesity |
title_short | Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced Obesity |
title_sort | branched chain amino acids and insulin resistance from protein supply to diet induced obesity |
topic | leucine valine isoleucine type 2 diabetes glucose tolerance protein consumption |
url | https://www.mdpi.com/2072-6643/15/1/68 |
work_keys_str_mv | AT jeanpascaldebandt branchedchainaminoacidsandinsulinresistancefromproteinsupplytodietinducedobesity AT xaviercoumoul branchedchainaminoacidsandinsulinresistancefromproteinsupplytodietinducedobesity AT robertbarouki branchedchainaminoacidsandinsulinresistancefromproteinsupplytodietinducedobesity |