Summary: | We analyze the efficiency in terms of a thermoelectric system of a one-dimensional Silicon–Germanium alloy. The dependency of thermal conductivity on the stoichiometry is pointed out, and the best fit of the experimental data is determined by a nonlinear regression method (NLRM). The thermoelectric efficiency of that system as function of the composition and of the effective temperature gradient is calculated as well. For three different temperatures (<inline-formula><math display="inline"><semantics><mrow><mi>T</mi><mo>=</mo><mn>300</mn><mtext> </mtext><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><mo>=</mo><mn>400</mn><mtext> </mtext><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><mo>=</mo><mn>500</mn><mtext> </mtext><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>), we determine the values of composition and thermal conductivity corresponding to the optimal thermoelectric energy conversion. The relationship of our approach with Finite-Time Thermodynamics is pointed out.
|