Robust network anomaly detection using ensemble learning approach and explainable artificial intelligence (XAI)
Intrusion Detection Systems, specifically Network Anomaly Detection Systems (NADSs) are vital tools in network security. The NADSs are affected by data imbalance issues in classifying minority classes. Also, designing an efficient detection framework is sought after to achieve a higher detection rat...
Glavni autori: | Mohammad Kazim Hooshmand, Manjaiah Doddaghatta Huchaiah, Ahmad Reda Alzighaibi, Hasan Hashim, El-Sayed Atlam, Ibrahim Gad |
---|---|
Format: | Članak |
Jezik: | English |
Izdano: |
Elsevier
2024-05-01
|
Serija: | Alexandria Engineering Journal |
Teme: | |
Online pristup: | http://www.sciencedirect.com/science/article/pii/S1110016824002850 |
Slični predmeti
-
Combining weighted SMOTE with ensemble learning for the class-imbalanced prediction of small business credit risk
od: Mohammad Zoynul Abedin, i dr.
Izdano: (2022-01-01) -
EL-RFHC: Optimized ensemble learners using RFHC for intrusion attacks classification
od: P. Kuppusamy, i dr.
Izdano: (2024-07-01) -
EDT-STACK: A stacking ensemble-based decision trees algorithm for tire tread depth condition classification
od: Mostafizur Rahman, i dr.
Izdano: (2024-06-01) -
DTO-SMOTE: Delaunay Tessellation Oversampling for Imbalanced Data Sets
od: Alexandre M. de Carvalho, i dr.
Izdano: (2020-11-01) -
Automatic Lithology Identification of Sandstone-type Uranium Deposit in Songliao Basin Based on Ensemble Learning
od: DUAN Zhongyi1;XIAO Kun1,*;YANG Yaxin1;HUANG Xiao2;JIANG Shan2;ZHANG Hua1;LUO Qibin1
Izdano: (2023-12-01)