Relative Radiometric Correction of Pushbroom Satellites Using the Yaw Maneuver

Earth-imaging satellites commonly acquire multispectral imagery using linear array detectors formatted as a pushbroom scanner. Landsat 8, a well-known example, uses pushbroom scanning and thus has 73,000 individual detectors. These 73,000 detectors are split among 14 different focal plane modules (F...

Full description

Bibliographic Details
Main Authors: Christopher Begeman, Dennis Helder, Larry Leigh, Chase Pinkert
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/12/2820
Description
Summary:Earth-imaging satellites commonly acquire multispectral imagery using linear array detectors formatted as a pushbroom scanner. Landsat 8, a well-known example, uses pushbroom scanning and thus has 73,000 individual detectors. These 73,000 detectors are split among 14 different focal plane modules (FPM), and each detector and FPM exhibit unique behavior when monitoring a uniform radiance value. To correct for each detector’s differences in sensor measurement, a novel technique of relative gain estimation that employs an optimized modified signal-to-noise ratio through a 90<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula> yaw maneuver, also known as side slither, is presented that allows for both FPM and detector-level relative gain calculation. A periodic model based on in-scene FPM corrections was designed as a go-to model for all bands aboard Landsat 8. Relative gains derived from the side-slither technique and applied to imagery provide a visual and statistical reduction in detector-level and FPM-level striping and banding in Landsat 8 imagery. Both reflective and thermal wavelengths are corrected to a level that rivals current operational methods. While Landsat 8 is used as an example, the methodology is applicable to all linear array sensors that can perform a 90<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula> yaw maneuver.
ISSN:2072-4292