The T Cell Epitope Landscape of SARS-CoV-2 Variants of Concern

During the COVID-19 pandemic, several SARS-CoV-2 variants of concern (VOC) emerged, bringing with them varying degrees of health and socioeconomic burdens. In particular, the Omicron VOC displayed distinct features of increased transmissibility accompanied by antigenic drift in the spike protein tha...

Full description

Bibliographic Details
Main Authors: Simen Tennøe, Marius Gheorghe, Richard Stratford, Trevor Clancy
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Vaccines
Subjects:
Online Access:https://www.mdpi.com/2076-393X/10/7/1123
_version_ 1797415073414643712
author Simen Tennøe
Marius Gheorghe
Richard Stratford
Trevor Clancy
author_facet Simen Tennøe
Marius Gheorghe
Richard Stratford
Trevor Clancy
author_sort Simen Tennøe
collection DOAJ
description During the COVID-19 pandemic, several SARS-CoV-2 variants of concern (VOC) emerged, bringing with them varying degrees of health and socioeconomic burdens. In particular, the Omicron VOC displayed distinct features of increased transmissibility accompanied by antigenic drift in the spike protein that partially circumvented the ability of pre-existing antibody responses in the global population to neutralize the virus. However, T cell immunity has remained robust throughout all the different VOC transmission waves and has emerged as a critically important correlate of protection against SARS-CoV-2 and its VOCs, in both vaccinated and infected individuals. Therefore, as SARS-CoV-2 VOCs continue to evolve, it is crucial that we characterize the correlates of protection and the potential for immune escape for both B cell and T cell human immunity in the population. Generating the insights necessary to understand T cell immunity, experimentally, for the global human population is at present a critical but a time consuming, expensive, and laborious process. Further, it is not feasible to generate global or universal insights into T cell immunity in an actionable time frame for potential future emerging VOCs. However, using computational means we can expedite and provide early insights into the correlates of T cell protection. In this study, we generated and revealed insights on the T cell epitope landscape for the five main SARS-CoV-2 VOCs observed to date. We demonstrated using a unique AI prediction platform, a significant conservation of presentable T cell epitopes across all mutated peptides for each VOC. This was modeled using the most frequent HLA alleles in the human population and covers the most common HLA haplotypes in the human population. The AI resource generated through this computational study and associated insights may guide the development of T cell vaccines and diagnostics that are even more robust against current and future VOCs, and their emerging subvariants.
first_indexed 2024-03-09T05:42:47Z
format Article
id doaj.art-0623aea24e694b68ae1356196dfb5115
institution Directory Open Access Journal
issn 2076-393X
language English
last_indexed 2024-03-09T05:42:47Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Vaccines
spelling doaj.art-0623aea24e694b68ae1356196dfb51152023-12-03T12:23:21ZengMDPI AGVaccines2076-393X2022-07-01107112310.3390/vaccines10071123The T Cell Epitope Landscape of SARS-CoV-2 Variants of ConcernSimen Tennøe0Marius Gheorghe1Richard Stratford2Trevor Clancy3NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo, NorwayNEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo, NorwayNEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo, NorwayNEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo, NorwayDuring the COVID-19 pandemic, several SARS-CoV-2 variants of concern (VOC) emerged, bringing with them varying degrees of health and socioeconomic burdens. In particular, the Omicron VOC displayed distinct features of increased transmissibility accompanied by antigenic drift in the spike protein that partially circumvented the ability of pre-existing antibody responses in the global population to neutralize the virus. However, T cell immunity has remained robust throughout all the different VOC transmission waves and has emerged as a critically important correlate of protection against SARS-CoV-2 and its VOCs, in both vaccinated and infected individuals. Therefore, as SARS-CoV-2 VOCs continue to evolve, it is crucial that we characterize the correlates of protection and the potential for immune escape for both B cell and T cell human immunity in the population. Generating the insights necessary to understand T cell immunity, experimentally, for the global human population is at present a critical but a time consuming, expensive, and laborious process. Further, it is not feasible to generate global or universal insights into T cell immunity in an actionable time frame for potential future emerging VOCs. However, using computational means we can expedite and provide early insights into the correlates of T cell protection. In this study, we generated and revealed insights on the T cell epitope landscape for the five main SARS-CoV-2 VOCs observed to date. We demonstrated using a unique AI prediction platform, a significant conservation of presentable T cell epitopes across all mutated peptides for each VOC. This was modeled using the most frequent HLA alleles in the human population and covers the most common HLA haplotypes in the human population. The AI resource generated through this computational study and associated insights may guide the development of T cell vaccines and diagnostics that are even more robust against current and future VOCs, and their emerging subvariants.https://www.mdpi.com/2076-393X/10/7/1123SARS-CoV-2COVID-19immunogenicityvariants of concernAlphaBeta
spellingShingle Simen Tennøe
Marius Gheorghe
Richard Stratford
Trevor Clancy
The T Cell Epitope Landscape of SARS-CoV-2 Variants of Concern
Vaccines
SARS-CoV-2
COVID-19
immunogenicity
variants of concern
Alpha
Beta
title The T Cell Epitope Landscape of SARS-CoV-2 Variants of Concern
title_full The T Cell Epitope Landscape of SARS-CoV-2 Variants of Concern
title_fullStr The T Cell Epitope Landscape of SARS-CoV-2 Variants of Concern
title_full_unstemmed The T Cell Epitope Landscape of SARS-CoV-2 Variants of Concern
title_short The T Cell Epitope Landscape of SARS-CoV-2 Variants of Concern
title_sort t cell epitope landscape of sars cov 2 variants of concern
topic SARS-CoV-2
COVID-19
immunogenicity
variants of concern
Alpha
Beta
url https://www.mdpi.com/2076-393X/10/7/1123
work_keys_str_mv AT simentennøe thetcellepitopelandscapeofsarscov2variantsofconcern
AT mariusgheorghe thetcellepitopelandscapeofsarscov2variantsofconcern
AT richardstratford thetcellepitopelandscapeofsarscov2variantsofconcern
AT trevorclancy thetcellepitopelandscapeofsarscov2variantsofconcern
AT simentennøe tcellepitopelandscapeofsarscov2variantsofconcern
AT mariusgheorghe tcellepitopelandscapeofsarscov2variantsofconcern
AT richardstratford tcellepitopelandscapeofsarscov2variantsofconcern
AT trevorclancy tcellepitopelandscapeofsarscov2variantsofconcern