Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making

The pioneer paradigm of soft set (<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>) was investigated by Molodtsov in 1999 by affixing parameterization tools in ordinary sets. <inline-formula> <tex-math notation="...

Full description

Bibliographic Details
Main Authors: Ronnason Chinram, Azmat Hussain, Muhammad Irfan Ali, Tahir Mahmood
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9354782/
_version_ 1811274069792784384
author Ronnason Chinram
Azmat Hussain
Muhammad Irfan Ali
Tahir Mahmood
author_facet Ronnason Chinram
Azmat Hussain
Muhammad Irfan Ali
Tahir Mahmood
author_sort Ronnason Chinram
collection DOAJ
description The pioneer paradigm of soft set (<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>) was investigated by Molodtsov in 1999 by affixing parameterization tools in ordinary sets. <inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> theory is free from inherit complexity and a nice mathematical tool for handle uncertainties and vagueness. The aim of this paper is to initiate the combine study of <inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> and q-rung orthopair fuzzy set (q-ROFS) to get the new notion called q-rung orthopair fuzzy soft set (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>). The notion of q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> is free from those complexities which suffering the contemporary theories because parameterization tool is the most significant character of q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>. In this manuscript our main contribution to originate the concept of q-ROF soft weighted geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>WG), q-ROF soft ordered weighted geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>OWG) and q-ROF soft hybrid geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>HG) operators in q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> environment. Moreover, some dominant properties of these developed operators are studied in detail. Based on these proposed approaches, a model is build up for multi-criteria decision making (MCDM) and their step wise algorithm is being presented. Finally, utilizing the developed approach an illustrative example is solved under q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula> environment. Further a comparative analysis of the investigated models with some existing methods are presented in detail which shows the superiority, competence and ability of the developed model.
first_indexed 2024-04-12T23:12:20Z
format Article
id doaj.art-062acb2f5c94461bbfd496bffb2cfd49
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-12T23:12:20Z
publishDate 2021-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-062acb2f5c94461bbfd496bffb2cfd492022-12-22T03:12:46ZengIEEEIEEE Access2169-35362021-01-019319753199310.1109/ACCESS.2021.30596839354782Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision MakingRonnason Chinram0https://orcid.org/0000-0002-6113-3689Azmat Hussain1https://orcid.org/0000-0001-7339-3771Muhammad Irfan Ali2https://orcid.org/0000-0002-9454-6324Tahir Mahmood3https://orcid.org/0000-0002-3871-3845Algebra and Applications Research Unit, Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, ThailandDepartment of Mathematics and Statistics, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad, PakistanDepartment of Mathematics, Islamabad Model College for Boys, Islamabad, PakistanDepartment of Mathematics and Statistics, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad, PakistanThe pioneer paradigm of soft set (<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>) was investigated by Molodtsov in 1999 by affixing parameterization tools in ordinary sets. <inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> theory is free from inherit complexity and a nice mathematical tool for handle uncertainties and vagueness. The aim of this paper is to initiate the combine study of <inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> and q-rung orthopair fuzzy set (q-ROFS) to get the new notion called q-rung orthopair fuzzy soft set (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>). The notion of q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> is free from those complexities which suffering the contemporary theories because parameterization tool is the most significant character of q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>. In this manuscript our main contribution to originate the concept of q-ROF soft weighted geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>WG), q-ROF soft ordered weighted geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>OWG) and q-ROF soft hybrid geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>HG) operators in q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> environment. Moreover, some dominant properties of these developed operators are studied in detail. Based on these proposed approaches, a model is build up for multi-criteria decision making (MCDM) and their step wise algorithm is being presented. Finally, utilizing the developed approach an illustrative example is solved under q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula> environment. Further a comparative analysis of the investigated models with some existing methods are presented in detail which shows the superiority, competence and ability of the developed model.https://ieeexplore.ieee.org/document/9354782/Pythagorean fuzzy sets<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>SPF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>Sq-ROFSq-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic> Sq-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>WG operator
spellingShingle Ronnason Chinram
Azmat Hussain
Muhammad Irfan Ali
Tahir Mahmood
Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making
IEEE Access
Pythagorean fuzzy sets
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>S
PF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>S
q-ROFS
q-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic> S
q-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>WG operator
title Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making
title_full Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making
title_fullStr Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making
title_full_unstemmed Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making
title_short Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making
title_sort some geometric aggregation operators under q rung orthopair fuzzy soft information with their applications in multi criteria decision making
topic Pythagorean fuzzy sets
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>S
PF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>S
q-ROFS
q-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic> S
q-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>WG operator
url https://ieeexplore.ieee.org/document/9354782/
work_keys_str_mv AT ronnasonchinram somegeometricaggregationoperatorsunderqrungorthopairfuzzysoftinformationwiththeirapplicationsinmulticriteriadecisionmaking
AT azmathussain somegeometricaggregationoperatorsunderqrungorthopairfuzzysoftinformationwiththeirapplicationsinmulticriteriadecisionmaking
AT muhammadirfanali somegeometricaggregationoperatorsunderqrungorthopairfuzzysoftinformationwiththeirapplicationsinmulticriteriadecisionmaking
AT tahirmahmood somegeometricaggregationoperatorsunderqrungorthopairfuzzysoftinformationwiththeirapplicationsinmulticriteriadecisionmaking