Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making
The pioneer paradigm of soft set (<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>) was investigated by Molodtsov in 1999 by affixing parameterization tools in ordinary sets. <inline-formula> <tex-math notation="...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9354782/ |
_version_ | 1811274069792784384 |
---|---|
author | Ronnason Chinram Azmat Hussain Muhammad Irfan Ali Tahir Mahmood |
author_facet | Ronnason Chinram Azmat Hussain Muhammad Irfan Ali Tahir Mahmood |
author_sort | Ronnason Chinram |
collection | DOAJ |
description | The pioneer paradigm of soft set (<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>) was investigated by Molodtsov in 1999 by affixing parameterization tools in ordinary sets. <inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> theory is free from inherit complexity and a nice mathematical tool for handle uncertainties and vagueness. The aim of this paper is to initiate the combine study of <inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> and q-rung orthopair fuzzy set (q-ROFS) to get the new notion called q-rung orthopair fuzzy soft set (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>). The notion of q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> is free from those complexities which suffering the contemporary theories because parameterization tool is the most significant character of q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>. In this manuscript our main contribution to originate the concept of q-ROF soft weighted geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>WG), q-ROF soft ordered weighted geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>OWG) and q-ROF soft hybrid geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>HG) operators in q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> environment. Moreover, some dominant properties of these developed operators are studied in detail. Based on these proposed approaches, a model is build up for multi-criteria decision making (MCDM) and their step wise algorithm is being presented. Finally, utilizing the developed approach an illustrative example is solved under q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula> environment. Further a comparative analysis of the investigated models with some existing methods are presented in detail which shows the superiority, competence and ability of the developed model. |
first_indexed | 2024-04-12T23:12:20Z |
format | Article |
id | doaj.art-062acb2f5c94461bbfd496bffb2cfd49 |
institution | Directory Open Access Journal |
issn | 2169-3536 |
language | English |
last_indexed | 2024-04-12T23:12:20Z |
publishDate | 2021-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Access |
spelling | doaj.art-062acb2f5c94461bbfd496bffb2cfd492022-12-22T03:12:46ZengIEEEIEEE Access2169-35362021-01-019319753199310.1109/ACCESS.2021.30596839354782Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision MakingRonnason Chinram0https://orcid.org/0000-0002-6113-3689Azmat Hussain1https://orcid.org/0000-0001-7339-3771Muhammad Irfan Ali2https://orcid.org/0000-0002-9454-6324Tahir Mahmood3https://orcid.org/0000-0002-3871-3845Algebra and Applications Research Unit, Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, ThailandDepartment of Mathematics and Statistics, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad, PakistanDepartment of Mathematics, Islamabad Model College for Boys, Islamabad, PakistanDepartment of Mathematics and Statistics, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad, PakistanThe pioneer paradigm of soft set (<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>) was investigated by Molodtsov in 1999 by affixing parameterization tools in ordinary sets. <inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> theory is free from inherit complexity and a nice mathematical tool for handle uncertainties and vagueness. The aim of this paper is to initiate the combine study of <inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> and q-rung orthopair fuzzy set (q-ROFS) to get the new notion called q-rung orthopair fuzzy soft set (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>). The notion of q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> is free from those complexities which suffering the contemporary theories because parameterization tool is the most significant character of q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula>. In this manuscript our main contribution to originate the concept of q-ROF soft weighted geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>WG), q-ROF soft ordered weighted geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>OWG) and q-ROF soft hybrid geometric (q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula>HG) operators in q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}\text{S}$ </tex-math></inline-formula> environment. Moreover, some dominant properties of these developed operators are studied in detail. Based on these proposed approaches, a model is build up for multi-criteria decision making (MCDM) and their step wise algorithm is being presented. Finally, utilizing the developed approach an illustrative example is solved under q-ROF<inline-formula> <tex-math notation="LaTeX">$S_{ft}$ </tex-math></inline-formula> environment. Further a comparative analysis of the investigated models with some existing methods are presented in detail which shows the superiority, competence and ability of the developed model.https://ieeexplore.ieee.org/document/9354782/Pythagorean fuzzy sets<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>SPF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>Sq-ROFSq-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic> Sq-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>WG operator |
spellingShingle | Ronnason Chinram Azmat Hussain Muhammad Irfan Ali Tahir Mahmood Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making IEEE Access Pythagorean fuzzy sets <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>S PF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>S q-ROFS q-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic> S q-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>WG operator |
title | Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making |
title_full | Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making |
title_fullStr | Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making |
title_full_unstemmed | Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making |
title_short | Some Geometric Aggregation Operators Under q-Rung Orthopair Fuzzy Soft Information With Their Applications in Multi-Criteria Decision Making |
title_sort | some geometric aggregation operators under q rung orthopair fuzzy soft information with their applications in multi criteria decision making |
topic | Pythagorean fuzzy sets <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>S PF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>S q-ROFS q-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic> S q-ROF<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Sft</italic>WG operator |
url | https://ieeexplore.ieee.org/document/9354782/ |
work_keys_str_mv | AT ronnasonchinram somegeometricaggregationoperatorsunderqrungorthopairfuzzysoftinformationwiththeirapplicationsinmulticriteriadecisionmaking AT azmathussain somegeometricaggregationoperatorsunderqrungorthopairfuzzysoftinformationwiththeirapplicationsinmulticriteriadecisionmaking AT muhammadirfanali somegeometricaggregationoperatorsunderqrungorthopairfuzzysoftinformationwiththeirapplicationsinmulticriteriadecisionmaking AT tahirmahmood somegeometricaggregationoperatorsunderqrungorthopairfuzzysoftinformationwiththeirapplicationsinmulticriteriadecisionmaking |