Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil–plant–atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transp...

Full description

Bibliographic Details
Main Authors: G. Cai, J. Vanderborght, M. Langensiepen, A. Schnepf, H. Hüging, H. Vereecken
Format: Article
Language:English
Published: Copernicus Publications 2018-04-01
Series:Hydrology and Earth System Sciences
Online Access:https://www.hydrol-earth-syst-sci.net/22/2449/2018/hess-22-2449-2018.pdf
_version_ 1819027060587233280
author G. Cai
J. Vanderborght
M. Langensiepen
A. Schnepf
H. Hüging
H. Vereecken
author_facet G. Cai
J. Vanderborght
M. Langensiepen
A. Schnepf
H. Hüging
H. Vereecken
author_sort G. Cai
collection DOAJ
description How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil–plant–atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes–Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in root density on RWU could be accounted for directly by the physically based RWU model but not by empirical models that use normalized root density functions.
first_indexed 2024-12-21T05:36:28Z
format Article
id doaj.art-062f8e7dc2274bfda7b7137dee64f418
institution Directory Open Access Journal
issn 1027-5606
1607-7938
language English
last_indexed 2024-12-21T05:36:28Z
publishDate 2018-04-01
publisher Copernicus Publications
record_format Article
series Hydrology and Earth System Sciences
spelling doaj.art-062f8e7dc2274bfda7b7137dee64f4182022-12-21T19:14:23ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382018-04-01222449247010.5194/hess-22-2449-2018Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditionsG. Cai0J. Vanderborght1M. Langensiepen2A. Schnepf3H. Hüging4H. Vereecken5Agrosphere, Institute of Bio- and Geosciences (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, GermanyAgrosphere, Institute of Bio- and Geosciences (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, GermanyInstitute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Katzenburgweg 5, 53115 Bonn, GermanyAgrosphere, Institute of Bio- and Geosciences (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, GermanyInstitute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Katzenburgweg 5, 53115 Bonn, GermanyAgrosphere, Institute of Bio- and Geosciences (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, GermanyHow much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil–plant–atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes–Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in root density on RWU could be accounted for directly by the physically based RWU model but not by empirical models that use normalized root density functions.https://www.hydrol-earth-syst-sci.net/22/2449/2018/hess-22-2449-2018.pdf
spellingShingle G. Cai
J. Vanderborght
M. Langensiepen
A. Schnepf
H. Hüging
H. Vereecken
Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
Hydrology and Earth System Sciences
title Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
title_full Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
title_fullStr Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
title_full_unstemmed Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
title_short Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
title_sort root growth water uptake and sap flow of winter wheat in response to different soil water conditions
url https://www.hydrol-earth-syst-sci.net/22/2449/2018/hess-22-2449-2018.pdf
work_keys_str_mv AT gcai rootgrowthwateruptakeandsapflowofwinterwheatinresponsetodifferentsoilwaterconditions
AT jvanderborght rootgrowthwateruptakeandsapflowofwinterwheatinresponsetodifferentsoilwaterconditions
AT mlangensiepen rootgrowthwateruptakeandsapflowofwinterwheatinresponsetodifferentsoilwaterconditions
AT aschnepf rootgrowthwateruptakeandsapflowofwinterwheatinresponsetodifferentsoilwaterconditions
AT hhuging rootgrowthwateruptakeandsapflowofwinterwheatinresponsetodifferentsoilwaterconditions
AT hvereecken rootgrowthwateruptakeandsapflowofwinterwheatinresponsetodifferentsoilwaterconditions