Bismuthene Arrays Harvesting Reversible Plating‐Alloying Electrochemistry Toward Robust Lithium Metal Batteries

3D lithiophilic skeletons have attracted enormous attention in homogenizing local current distribution and optimizing metal deposition in the pursuit of robust Li metal anodes. Nonetheless, their practicability is markedly plagued by the cumbersome production routes and mediocre Coulombic efficiency...

Full description

Bibliographic Details
Main Authors: Yifan Ding, Yingjie Sun, Zixiong Shi, Xianzhong Yang, Xiaoyu Yu, Xiaojing Wang, Jingyu Sun
Format: Article
Language:English
Published: Wiley-VCH 2023-02-01
Series:Small Structures
Subjects:
Online Access:https://doi.org/10.1002/sstr.202200313
_version_ 1797772499293831168
author Yifan Ding
Yingjie Sun
Zixiong Shi
Xianzhong Yang
Xiaoyu Yu
Xiaojing Wang
Jingyu Sun
author_facet Yifan Ding
Yingjie Sun
Zixiong Shi
Xianzhong Yang
Xiaoyu Yu
Xiaojing Wang
Jingyu Sun
author_sort Yifan Ding
collection DOAJ
description 3D lithiophilic skeletons have attracted enormous attention in homogenizing local current distribution and optimizing metal deposition in the pursuit of robust Li metal anodes. Nonetheless, their practicability is markedly plagued by the cumbersome production routes and mediocre Coulombic efficiency (CE) of Li plating/stripping. Herein, scalable in situ growth of uniform bismuthene arrays over commercial Cu foam via spontaneous galvanic replacement reaction is demonstrated. Exhaustive structural/electrochemical measurements in combination with theoretical calculations collectively disclose the reversible plating‐alloying mechanism, wherein the formed Li3Bi alloy interphase aids to lower the Li nucleation overpotential and elevate the CE performance. The thus‐designed Li metal electrode sustains a stable cyclic operation at 1 mA cm−2/1 mAh cm−2 for 1600 h. When paired with LiFePO4 and sulfur cathodes, the Li metal batteries enable gratifying rate capability and cycling durability. This straightforward maneuver opens a new frontier in the scalable manufacturing of pragmatic current collectors in an economic fashion.
first_indexed 2024-03-12T21:51:48Z
format Article
id doaj.art-06434d85ecb2431f90b96ee3d9b80a38
institution Directory Open Access Journal
issn 2688-4062
language English
last_indexed 2024-03-12T21:51:48Z
publishDate 2023-02-01
publisher Wiley-VCH
record_format Article
series Small Structures
spelling doaj.art-06434d85ecb2431f90b96ee3d9b80a382023-07-26T01:35:40ZengWiley-VCHSmall Structures2688-40622023-02-0142n/an/a10.1002/sstr.202200313Bismuthene Arrays Harvesting Reversible Plating‐Alloying Electrochemistry Toward Robust Lithium Metal BatteriesYifan Ding0Yingjie Sun1Zixiong Shi2Xianzhong Yang3Xiaoyu Yu4Xiaojing Wang5Jingyu Sun6College of Energy Soochow Institute for Energy and Materials Innovations Light Industry Institute of Electrochemical Power Sources Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 P. R. ChinaHebei Key Laboratory of Photoelectric Control on Surface and Interface College of Science Hebei University of Science and Technology Shijiazhuang 050018 P. R. ChinaMaterials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi ArabiaCollege of Energy Soochow Institute for Energy and Materials Innovations Light Industry Institute of Electrochemical Power Sources Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 P. R. ChinaCollege of Energy Soochow Institute for Energy and Materials Innovations Light Industry Institute of Electrochemical Power Sources Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 P. R. ChinaHebei Key Laboratory of Photoelectric Control on Surface and Interface College of Science Hebei University of Science and Technology Shijiazhuang 050018 P. R. ChinaCollege of Energy Soochow Institute for Energy and Materials Innovations Light Industry Institute of Electrochemical Power Sources Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 P. R. China3D lithiophilic skeletons have attracted enormous attention in homogenizing local current distribution and optimizing metal deposition in the pursuit of robust Li metal anodes. Nonetheless, their practicability is markedly plagued by the cumbersome production routes and mediocre Coulombic efficiency (CE) of Li plating/stripping. Herein, scalable in situ growth of uniform bismuthene arrays over commercial Cu foam via spontaneous galvanic replacement reaction is demonstrated. Exhaustive structural/electrochemical measurements in combination with theoretical calculations collectively disclose the reversible plating‐alloying mechanism, wherein the formed Li3Bi alloy interphase aids to lower the Li nucleation overpotential and elevate the CE performance. The thus‐designed Li metal electrode sustains a stable cyclic operation at 1 mA cm−2/1 mAh cm−2 for 1600 h. When paired with LiFePO4 and sulfur cathodes, the Li metal batteries enable gratifying rate capability and cycling durability. This straightforward maneuver opens a new frontier in the scalable manufacturing of pragmatic current collectors in an economic fashion.https://doi.org/10.1002/sstr.202200313bismuthene arraysdendrite-free morphologiesgalvanic replacement reactionsLi metal anodesLi3Bi alloys
spellingShingle Yifan Ding
Yingjie Sun
Zixiong Shi
Xianzhong Yang
Xiaoyu Yu
Xiaojing Wang
Jingyu Sun
Bismuthene Arrays Harvesting Reversible Plating‐Alloying Electrochemistry Toward Robust Lithium Metal Batteries
Small Structures
bismuthene arrays
dendrite-free morphologies
galvanic replacement reactions
Li metal anodes
Li3Bi alloys
title Bismuthene Arrays Harvesting Reversible Plating‐Alloying Electrochemistry Toward Robust Lithium Metal Batteries
title_full Bismuthene Arrays Harvesting Reversible Plating‐Alloying Electrochemistry Toward Robust Lithium Metal Batteries
title_fullStr Bismuthene Arrays Harvesting Reversible Plating‐Alloying Electrochemistry Toward Robust Lithium Metal Batteries
title_full_unstemmed Bismuthene Arrays Harvesting Reversible Plating‐Alloying Electrochemistry Toward Robust Lithium Metal Batteries
title_short Bismuthene Arrays Harvesting Reversible Plating‐Alloying Electrochemistry Toward Robust Lithium Metal Batteries
title_sort bismuthene arrays harvesting reversible plating alloying electrochemistry toward robust lithium metal batteries
topic bismuthene arrays
dendrite-free morphologies
galvanic replacement reactions
Li metal anodes
Li3Bi alloys
url https://doi.org/10.1002/sstr.202200313
work_keys_str_mv AT yifanding bismuthenearraysharvestingreversibleplatingalloyingelectrochemistrytowardrobustlithiummetalbatteries
AT yingjiesun bismuthenearraysharvestingreversibleplatingalloyingelectrochemistrytowardrobustlithiummetalbatteries
AT zixiongshi bismuthenearraysharvestingreversibleplatingalloyingelectrochemistrytowardrobustlithiummetalbatteries
AT xianzhongyang bismuthenearraysharvestingreversibleplatingalloyingelectrochemistrytowardrobustlithiummetalbatteries
AT xiaoyuyu bismuthenearraysharvestingreversibleplatingalloyingelectrochemistrytowardrobustlithiummetalbatteries
AT xiaojingwang bismuthenearraysharvestingreversibleplatingalloyingelectrochemistrytowardrobustlithiummetalbatteries
AT jingyusun bismuthenearraysharvestingreversibleplatingalloyingelectrochemistrytowardrobustlithiummetalbatteries