Gallai-Ramsey Numbers for Rainbow S3+S_3^ + and Monochromatic Paths

Motivated by Ramsey theory and other rainbow-coloring-related problems, we consider edge-colorings of complete graphs without rainbow copy of some fixed subgraphs. Given two graphs G and H, the k-colored Gallai-Ramsey number grk(G : H) is defined to be the minimum positive integer n such that every...

Full description

Bibliographic Details
Main Authors: Li Xihe, Wang Ligong
Format: Article
Language:English
Published: University of Zielona Góra 2022-05-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.2310
_version_ 1827844619294998528
author Li Xihe
Wang Ligong
author_facet Li Xihe
Wang Ligong
author_sort Li Xihe
collection DOAJ
description Motivated by Ramsey theory and other rainbow-coloring-related problems, we consider edge-colorings of complete graphs without rainbow copy of some fixed subgraphs. Given two graphs G and H, the k-colored Gallai-Ramsey number grk(G : H) is defined to be the minimum positive integer n such that every k-coloring of the complete graph on n vertices contains either a rainbow copy of G or a monochromatic copy of H. Let S3+S_3^ + be the graph on four vertices consisting of a triangle with a pendant edge. In this paper, we prove that grk(S3+:P5)=k+4(k≥5)g{r_k}\left( {S_3^ + :{P_5}} \right) = k + 4\left( {k \ge 5} \right), grk(S3+:mP2)=(m-1)k+m+1(k≥1)g{r_k}\left( {S_3^ + :m{P_2}} \right) = \left( {m - 1} \right)k + m + 1\left( {k \ge 1} \right), grk(S3+:P3∪P2)=k+4(k≥5)g{r_k}\left( {S_3^ + :{P_3} \cup {P_2}} \right) = k + 4\left( {k \ge 5} \right) and grk(S3+:2P3)=k+5(k≥1)g{r_k}\left( {S_3^ + :2{P_3}} \right) = k + 5\left( {k \ge 1} \right).
first_indexed 2024-03-12T08:44:29Z
format Article
id doaj.art-06469fed6af54b5e9036264a9e760df6
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T08:44:29Z
publishDate 2022-05-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-06469fed6af54b5e9036264a9e760df62023-09-02T16:29:34ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922022-05-0142234936210.7151/dmgt.2310Gallai-Ramsey Numbers for Rainbow S3+S_3^ + and Monochromatic PathsLi Xihe0Wang Ligong1School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, P.R.ChinaXi’an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, P.R.ChinaMotivated by Ramsey theory and other rainbow-coloring-related problems, we consider edge-colorings of complete graphs without rainbow copy of some fixed subgraphs. Given two graphs G and H, the k-colored Gallai-Ramsey number grk(G : H) is defined to be the minimum positive integer n such that every k-coloring of the complete graph on n vertices contains either a rainbow copy of G or a monochromatic copy of H. Let S3+S_3^ + be the graph on four vertices consisting of a triangle with a pendant edge. In this paper, we prove that grk(S3+:P5)=k+4(k≥5)g{r_k}\left( {S_3^ + :{P_5}} \right) = k + 4\left( {k \ge 5} \right), grk(S3+:mP2)=(m-1)k+m+1(k≥1)g{r_k}\left( {S_3^ + :m{P_2}} \right) = \left( {m - 1} \right)k + m + 1\left( {k \ge 1} \right), grk(S3+:P3∪P2)=k+4(k≥5)g{r_k}\left( {S_3^ + :{P_3} \cup {P_2}} \right) = k + 4\left( {k \ge 5} \right) and grk(S3+:2P3)=k+5(k≥1)g{r_k}\left( {S_3^ + :2{P_3}} \right) = k + 5\left( {k \ge 1} \right).https://doi.org/10.7151/dmgt.2310gallai-ramsey numberrainbow coloringmonochromatic paths05c1505c5505d10
spellingShingle Li Xihe
Wang Ligong
Gallai-Ramsey Numbers for Rainbow S3+S_3^ + and Monochromatic Paths
Discussiones Mathematicae Graph Theory
gallai-ramsey number
rainbow coloring
monochromatic paths
05c15
05c55
05d10
title Gallai-Ramsey Numbers for Rainbow S3+S_3^ + and Monochromatic Paths
title_full Gallai-Ramsey Numbers for Rainbow S3+S_3^ + and Monochromatic Paths
title_fullStr Gallai-Ramsey Numbers for Rainbow S3+S_3^ + and Monochromatic Paths
title_full_unstemmed Gallai-Ramsey Numbers for Rainbow S3+S_3^ + and Monochromatic Paths
title_short Gallai-Ramsey Numbers for Rainbow S3+S_3^ + and Monochromatic Paths
title_sort gallai ramsey numbers for rainbow s3 s 3 and monochromatic paths
topic gallai-ramsey number
rainbow coloring
monochromatic paths
05c15
05c55
05d10
url https://doi.org/10.7151/dmgt.2310
work_keys_str_mv AT lixihe gallairamseynumbersforrainbows3s3andmonochromaticpaths
AT wangligong gallairamseynumbersforrainbows3s3andmonochromaticpaths