Summary: | The present research proposes a two-step physics- and machine-learning(ML)-based electromechanical impedance (EMI) measurement data evaluation approach for sandwich face layer debonding detection and size estimation in structural health monitoring (SHM) applications. As a case example, a circular aluminum sandwich panel with idealized face layer debonding was used. Both the sensor and debonding were located at the center of the sandwich. Synthetic EMI spectra were generated by a finite-element(FE)-based parameter study, and were used for feature engineering and ML model training and development. Calibration of the real-world EMI measurement data was shown to overcome the FE model simplifications, enabling their evaluation by the found synthetic data-based features and models. The data preprocessing and ML models were validated by unseen real-world EMI measurement data collected in a laboratory environment. The best detection and size estimation performances were found for a One-Class Support Vector Machine and a K-Nearest Neighbor model, respectively, which clearly showed reliable identification of relevant debonding sizes. Furthermore, the approach was shown to be robust against unknown artificial disturbances, and outperformed a previous method for debonding size estimation. The data and code used in this study are provided in their entirety, to enhance comprehensibility, and to encourage future research.
|