Thermal and Hydrolytic Stability of Dithiophophoric Acids Stabilité thermique et hydrolytique des acides dithiophosphoriques

The thermal and hydrolytic stability of dibutyl-, diisobutyl- and diisooctyldithiophosphoric acids have been studied in the range of 40-80°C. The reaction progress was followed by the H2S evolution kinetics in volumetric equipment at constant pressure, equal to the barometric one. The kinetic parame...

Full description

Bibliographic Details
Main Authors: Ivanov S. K., Karshalykov C., Litovchenko N. R., Kupko G. G.
Format: Article
Language:English
Published: EDP Sciences 2006-11-01
Series:Oil & Gas Science and Technology
Online Access:http://dx.doi.org/10.2516/ogst:1993003
_version_ 1798028648103542784
author Ivanov S. K.
Karshalykov C.
Litovchenko N. R.
Kupko G. G.
author_facet Ivanov S. K.
Karshalykov C.
Litovchenko N. R.
Kupko G. G.
author_sort Ivanov S. K.
collection DOAJ
description The thermal and hydrolytic stability of dibutyl-, diisobutyl- and diisooctyldithiophosphoric acids have been studied in the range of 40-80°C. The reaction progress was followed by the H2S evolution kinetics in volumetric equipment at constant pressure, equal to the barometric one. The kinetic parameters of the process have been determined at various acid water ratios - maximum rates of gas evolution, activation energy and the kinetic order. It has been shown that the hydrolysis proceeds mainly along the sulph-hydrate group of the acid (up to temperatures of 60°C), while at higher temperatures the ester groups and the thion sulphur are attacked too. The thermal stability of dithiophosphoric acids has been studied in the presence of stainless steel, lead and copper plates. It has been shown that stainless steel doesn't affect the process rate, while copper and especially lead increase the gas evolution and decrease the activation energy. A model describing the reaction progress at the interfacial surfaces - organic phase, water and metal surface - has been developed. Based on these data a conclusion is advanced, related to the manifacture technology of antioxidant, anticorrosion and antiwear additives of the zinc dialkyldithiophosphate type. It is pointed out that the neutralization process of dithiophosphoric acids should be carried out in a stainless steel reactor at tempeatures below 70°C. <br> Le présent article s'efforce d'élucider l'influence de l'eau, de la température et des surfaces métalliques sur la stabilité thermique et hydrolytique des acides dibutyl-, diisobutyl- et diisooctyldithiophosphoriques, à la lumière du concept d'interaction.
first_indexed 2024-04-11T19:12:54Z
format Article
id doaj.art-064e4cd3c4a644ffaaec038f20c0aab6
institution Directory Open Access Journal
issn 1294-4475
1953-8189
language English
last_indexed 2024-04-11T19:12:54Z
publishDate 2006-11-01
publisher EDP Sciences
record_format Article
series Oil & Gas Science and Technology
spelling doaj.art-064e4cd3c4a644ffaaec038f20c0aab62022-12-22T04:07:33ZengEDP SciencesOil & Gas Science and Technology1294-44751953-81892006-11-01481435210.2516/ogst:1993003Thermal and Hydrolytic Stability of Dithiophophoric Acids Stabilité thermique et hydrolytique des acides dithiophosphoriquesIvanov S. K.Karshalykov C.Litovchenko N. R.Kupko G. G.The thermal and hydrolytic stability of dibutyl-, diisobutyl- and diisooctyldithiophosphoric acids have been studied in the range of 40-80°C. The reaction progress was followed by the H2S evolution kinetics in volumetric equipment at constant pressure, equal to the barometric one. The kinetic parameters of the process have been determined at various acid water ratios - maximum rates of gas evolution, activation energy and the kinetic order. It has been shown that the hydrolysis proceeds mainly along the sulph-hydrate group of the acid (up to temperatures of 60°C), while at higher temperatures the ester groups and the thion sulphur are attacked too. The thermal stability of dithiophosphoric acids has been studied in the presence of stainless steel, lead and copper plates. It has been shown that stainless steel doesn't affect the process rate, while copper and especially lead increase the gas evolution and decrease the activation energy. A model describing the reaction progress at the interfacial surfaces - organic phase, water and metal surface - has been developed. Based on these data a conclusion is advanced, related to the manifacture technology of antioxidant, anticorrosion and antiwear additives of the zinc dialkyldithiophosphate type. It is pointed out that the neutralization process of dithiophosphoric acids should be carried out in a stainless steel reactor at tempeatures below 70°C. <br> Le présent article s'efforce d'élucider l'influence de l'eau, de la température et des surfaces métalliques sur la stabilité thermique et hydrolytique des acides dibutyl-, diisobutyl- et diisooctyldithiophosphoriques, à la lumière du concept d'interaction.http://dx.doi.org/10.2516/ogst:1993003
spellingShingle Ivanov S. K.
Karshalykov C.
Litovchenko N. R.
Kupko G. G.
Thermal and Hydrolytic Stability of Dithiophophoric Acids Stabilité thermique et hydrolytique des acides dithiophosphoriques
Oil & Gas Science and Technology
title Thermal and Hydrolytic Stability of Dithiophophoric Acids Stabilité thermique et hydrolytique des acides dithiophosphoriques
title_full Thermal and Hydrolytic Stability of Dithiophophoric Acids Stabilité thermique et hydrolytique des acides dithiophosphoriques
title_fullStr Thermal and Hydrolytic Stability of Dithiophophoric Acids Stabilité thermique et hydrolytique des acides dithiophosphoriques
title_full_unstemmed Thermal and Hydrolytic Stability of Dithiophophoric Acids Stabilité thermique et hydrolytique des acides dithiophosphoriques
title_short Thermal and Hydrolytic Stability of Dithiophophoric Acids Stabilité thermique et hydrolytique des acides dithiophosphoriques
title_sort thermal and hydrolytic stability of dithiophophoric acids stabilite thermique et hydrolytique des acides dithiophosphoriques
url http://dx.doi.org/10.2516/ogst:1993003
work_keys_str_mv AT ivanovsk thermalandhydrolyticstabilityofdithiophophoricacidsstabilitethermiqueethydrolytiquedesacidesdithiophosphoriques
AT karshalykovc thermalandhydrolyticstabilityofdithiophophoricacidsstabilitethermiqueethydrolytiquedesacidesdithiophosphoriques
AT litovchenkonr thermalandhydrolyticstabilityofdithiophophoricacidsstabilitethermiqueethydrolytiquedesacidesdithiophosphoriques
AT kupkogg thermalandhydrolyticstabilityofdithiophophoricacidsstabilitethermiqueethydrolytiquedesacidesdithiophosphoriques