Order estimates of the uniform approximations by Zygmund sums on the classes of convolutions of periodic functions

The Zygmund sums of a function $f\in L_{1}$ are trigonometric polynomials of the form $$Z^{s}_{n-1}(f;t):=\frac{a_{0}}{2}+\sum_{k=1}^{n-1}\Big(1-\big(\frac{k}{n}\big)^{s}\Big) \big(a_{k}(f)\cos kt+b_{k}(f)\sin kt\big), s>0,$$ where $a_{k}(f)$ and $b_{k}(f)$ are the Fourier coefficients of $f$. We...

Full description

Bibliographic Details
Main Authors: A.S. Serdyuk, U.Z. Hrabova
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2021-04-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/4404

Similar Items