Summary: | Abstract Background Previous studies have shown that seizures can cause cognitive disorders. On the other hand, the Curcuma zedoaria (CZ) has beneficial effects on the nervous system. However, there is little information on the possible effects of the CZ extract on seizures. The aim of this study was to investigate the possible effects of CZ extract on cognitive impairment and oxidative stress induced by epilepsy in rats. Methods Rats were randomly divided into different groups. In all rats (except the sham group), kindling was performed by intraperitoneal injection of pentylenetetrazol (PTZ) at a dose of 35 mg/kg every 48 h for 14 days. Positive group received 2 mg/kg diazepam + PTZ; treatment groups received 100, 200 or 400 mg/kg CZ extract + PTZ; and one group received 0.5 mg/kg flumazenil and CZ extract + PTZ. Shuttle box and Morris Water Maze tests were used to measure memory and learning. On the last day of treatments PTZ injection was at dose of 60 mg/kg, tonic seizure threshold and mortality rate were recorded in each group. After deep anesthesia, blood was drawn from the rats’ hearts and the hippocampus of all rats was removed. Results Statistical analysis of the data showed that the CZ extract significantly increased the tonic seizure threshold and reduced the pentylenetetrazol-induced mortality and the extract dose of 400 mg/kg was selected as the most effective dose compared to the other doses. It was also found that flumazenil (a GABAA receptor antagonist) reduced the tonic seizure threshold compared to the effective dose of the extract. The results of shuttle box and Morris water maze behavioral tests showed that memory and learning decreased in the negative control group and the CZ extract treatment improved memory and learning in rats. The CZ extract also increased antioxidant capacity, decreased MDA and NO in the brain and serum of pre-treated groups in compared to the negative control group. Conclusion: It is concluded that the CZ extract has beneficial effects on learning and memory impairment in PTZ-induced epilepsy model, which has been associated with antioxidant effects in the brain or possibly exerts its effects through the GABAergic system.
|