A study on the AH1N1/09 influenza transmission model with the fractional Caputo–Fabrizio derivative

Abstract We study the SEIR epidemic model for the spread of AH1N1 influenza using the Caputo–Fabrizio fractional-order derivative. The reproduction number of system and equilibrium points are calculated, and the stability of the disease-free equilibrium point is investigated. We prove the existence...

Full description

Bibliographic Details
Main Authors: Shahram Rezapour, Hakimeh Mohammadi
Format: Article
Language:English
Published: SpringerOpen 2020-09-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-020-02945-x
Description
Summary:Abstract We study the SEIR epidemic model for the spread of AH1N1 influenza using the Caputo–Fabrizio fractional-order derivative. The reproduction number of system and equilibrium points are calculated, and the stability of the disease-free equilibrium point is investigated. We prove the existence of solution for the model by using fixed point theory. Using the fractional Euler method, we get an approximate solution to the model. In the numerical section, we present a simulation to examine the system, in which we calculate equilibrium points of the system and examine the behavior of the resulting functions at the equilibrium points. By calculating the results of the model for different fractional order, we examine the effect of the derivative order on the behavior of the resulting functions and obtained numerical values. We also calculate the results of the integer-order model and examine their differences with the results of the fractional-order model.
ISSN:1687-1847