Validation of Improved Significant Wave Heights from the Brown-Peaky (BP) Retracker along the East Coast of Australia

Improved significant wave heights (SWHs) along the east coast of Australia have been estimated using the parameters resolved by a Brown-peaky (BP) retracker through reprocessing of three years of Jason-1 altimetric waveforms. The BP-estimated SWHs are validated against eight waverider buoys along th...

Full description

Bibliographic Details
Main Authors: Fukai Peng, Xiaoli Deng
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/10/7/1072
Description
Summary:Improved significant wave heights (SWHs) along the east coast of Australia have been estimated using the parameters resolved by a Brown-peaky (BP) retracker through reprocessing of three years of Jason-1 altimetric waveforms. The BP-estimated SWHs are validated against eight waverider buoys along the coast, and compared with the SWHs estimated by the standard four-parameter maximum likelihood estimator (MLE4). When assessing 1 Hz coastal SWHs for distances from 12 km to the coast, mean standard deviations (STDs) of BP SWHs vary from ca. 0.5 m to 0.9 m, while those of MLE4 SWHs increase from ca. 0.6 m to ca. 2.3 m, indicating a dramatically drop in the quality of MLE4-derived SWHs at the coast. The BP retracker has retrieved ca. 80% of 1 Hz coastal SWHs, which are more than those (ca. 50%) by the standard MLE4. The validation of 1 Hz SWHs is performed by calculating the along-altimeter-track pointwise bias, STD and correlation coefficient between altimetry and buoys. The results show that within 30 km off the coast the BP dataset has better agreement with buoy’s wave heights than the SGDR MLE4 dataset in terms of the BP’s small absolute biases and STDs, as well as high correlation coefficients.
ISSN:2072-4292