Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin

<p>Nitrogen (N) availability can be highly variable in tropical forests on regional and local scales. While environmental gradients influence N cycling on a regional scale, topography is known to affect N availability on a local scale. We compared natural abundance of <span class="inli...

Full description

Bibliographic Details
Main Authors: S. Baumgartner, M. Bauters, M. Barthel, T. W. Drake, L. C. Ntaboba, B. M. Bazirake, J. Six, P. Boeckx, K. Van Oost
Format: Article
Language:English
Published: Copernicus Publications 2021-03-01
Series:SOIL
Online Access:https://soil.copernicus.org/articles/7/83/2021/soil-7-83-2021.pdf
_version_ 1819175779998629888
author S. Baumgartner
S. Baumgartner
M. Bauters
M. Bauters
M. Barthel
T. W. Drake
L. C. Ntaboba
B. M. Bazirake
J. Six
P. Boeckx
K. Van Oost
author_facet S. Baumgartner
S. Baumgartner
M. Bauters
M. Bauters
M. Barthel
T. W. Drake
L. C. Ntaboba
B. M. Bazirake
J. Six
P. Boeckx
K. Van Oost
author_sort S. Baumgartner
collection DOAJ
description <p>Nitrogen (N) availability can be highly variable in tropical forests on regional and local scales. While environmental gradients influence N cycling on a regional scale, topography is known to affect N availability on a local scale. We compared natural abundance of <span class="inline-formula"><sup>15</sup>N</span> isotopes of soil profiles in tropical lowland forest, tropical montane forest, and subtropical Miombo woodland within the Congo Basin as a proxy to assess ecosystem-level differences in N cycling. Soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> profiles indicated that N cycling in the montane forest is relatively more closed and dominated by organic N turnover, whereas the lowland forest and Miombo woodland experienced a more open N cycle dominated by inorganic N. Furthermore, we examined the effect of slope gradient on soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> within forest types to quantify local differences induced by topography. Our results show that slope gradient only affects the soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> in the Miombo forest, which is prone to erosion due to a lower vegetation cover and intense rainfall at the onset of the wet season. Lowland forest, on the other hand, with a flat topography and protective vegetation cover, showed no influence of topography on soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> in our study site. Despite the steep topography, slope angles do not affect soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> in the montane forest, although stable isotope signatures exhibited higher variability within this ecosystem. A pan-tropical analysis of soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> values (i.e., from our study and literature) reveals that soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> in tropical forests is best explained by factors controlling erosion, namely mean annual precipitation, leaf area index, and slope gradient. Erosive forces vary immensely between different tropical forest ecosystems, and our results highlight the need for more spatial coverage of N cycling studies in tropical forests, to further elucidate the local impact of topography on N cycling in this biome.</p>
first_indexed 2024-12-22T21:00:18Z
format Article
id doaj.art-0681f98910bd4e2288ef78ef8b0cbc8c
institution Directory Open Access Journal
issn 2199-3971
2199-398X
language English
last_indexed 2024-12-22T21:00:18Z
publishDate 2021-03-01
publisher Copernicus Publications
record_format Article
series SOIL
spelling doaj.art-0681f98910bd4e2288ef78ef8b0cbc8c2022-12-21T18:12:51ZengCopernicus PublicationsSOIL2199-39712199-398X2021-03-017839410.5194/soil-7-83-2021Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo BasinS. Baumgartner0S. Baumgartner1M. Bauters2M. Bauters3M. Barthel4T. W. Drake5L. C. Ntaboba6B. M. Bazirake7J. Six8P. Boeckx9K. Van Oost10Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, BelgiumDepartment of Green Chemistry and Technology, Ghent University, Ghent, 9000, BelgiumDepartment of Green Chemistry and Technology, Ghent University, Ghent, 9000, BelgiumDepartment of Environment, Ghent University, Ghent, 9000, BelgiumDepartment of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, 8092, SwitzerlandDepartment of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, 8092, SwitzerlandDépartment d'Agronomie, Université Catholique de Bukavu, Bukavu, DR CongoDepartment of General Agricultural Sciences, University of Lubumbashi, Lubumbashi, DR CongoDepartment of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, 8092, SwitzerlandDepartment of Green Chemistry and Technology, Ghent University, Ghent, 9000, BelgiumEarth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium<p>Nitrogen (N) availability can be highly variable in tropical forests on regional and local scales. While environmental gradients influence N cycling on a regional scale, topography is known to affect N availability on a local scale. We compared natural abundance of <span class="inline-formula"><sup>15</sup>N</span> isotopes of soil profiles in tropical lowland forest, tropical montane forest, and subtropical Miombo woodland within the Congo Basin as a proxy to assess ecosystem-level differences in N cycling. Soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> profiles indicated that N cycling in the montane forest is relatively more closed and dominated by organic N turnover, whereas the lowland forest and Miombo woodland experienced a more open N cycle dominated by inorganic N. Furthermore, we examined the effect of slope gradient on soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> within forest types to quantify local differences induced by topography. Our results show that slope gradient only affects the soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> in the Miombo forest, which is prone to erosion due to a lower vegetation cover and intense rainfall at the onset of the wet season. Lowland forest, on the other hand, with a flat topography and protective vegetation cover, showed no influence of topography on soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> in our study site. Despite the steep topography, slope angles do not affect soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> in the montane forest, although stable isotope signatures exhibited higher variability within this ecosystem. A pan-tropical analysis of soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> values (i.e., from our study and literature) reveals that soil <span class="inline-formula"><i>δ</i></span><span class="inline-formula"><sup>15</sup>N</span> in tropical forests is best explained by factors controlling erosion, namely mean annual precipitation, leaf area index, and slope gradient. Erosive forces vary immensely between different tropical forest ecosystems, and our results highlight the need for more spatial coverage of N cycling studies in tropical forests, to further elucidate the local impact of topography on N cycling in this biome.</p>https://soil.copernicus.org/articles/7/83/2021/soil-7-83-2021.pdf
spellingShingle S. Baumgartner
S. Baumgartner
M. Bauters
M. Bauters
M. Barthel
T. W. Drake
L. C. Ntaboba
B. M. Bazirake
J. Six
P. Boeckx
K. Van Oost
Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
SOIL
title Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
title_full Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
title_fullStr Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
title_full_unstemmed Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
title_short Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
title_sort stable isotope signatures of soil nitrogen on an environmental geomorphic gradient within the congo basin
url https://soil.copernicus.org/articles/7/83/2021/soil-7-83-2021.pdf
work_keys_str_mv AT sbaumgartner stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin
AT sbaumgartner stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin
AT mbauters stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin
AT mbauters stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin
AT mbarthel stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin
AT twdrake stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin
AT lcntaboba stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin
AT bmbazirake stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin
AT jsix stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin
AT pboeckx stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin
AT kvanoost stableisotopesignaturesofsoilnitrogenonanenvironmentalgeomorphicgradientwithinthecongobasin