The combinatorial derivation

Let $G$ be a group, $\mathcal{P}_G$ be the family of all subsets of $G$. For a subset $A\subseteq G$, we put $\Delta(A)=\{g\in G:|gA\cap A|=\infty\}$. The mapping $\Delta:\mathcal{P}_G\rightarrow\mathcal{P}_G$, $A\mapsto\Delta(A)$, is called a combinatorial derivation and can be considered as an ana...

Full description

Bibliographic Details
Main Author: Igor V. Protasov
Format: Article
Language:English
Published: Universitat Politècnica de València 2013-09-01
Series:Applied General Topology
Subjects:
Online Access:http://polipapers.upv.es/index.php/AGT/article/view/1587
_version_ 1818202351346909184
author Igor V. Protasov
author_facet Igor V. Protasov
author_sort Igor V. Protasov
collection DOAJ
description Let $G$ be a group, $\mathcal{P}_G$ be the family of all subsets of $G$. For a subset $A\subseteq G$, we put $\Delta(A)=\{g\in G:|gA\cap A|=\infty\}$. The mapping $\Delta:\mathcal{P}_G\rightarrow\mathcal{P}_G$, $A\mapsto\Delta(A)$, is called a combinatorial derivation and can be considered as an analogue of the topological derivation $d:\mathcal{P}_X\rightarrow\mathcal{P}_X$, $A\mapsto A^d$, where $X$ is a topological space and $A^d$ is the set of all limit points of $A$. Content: elementary properties, thin and almost thin subsets, partitions, inverse construction and $\Delta$-trajectories,  $\Delta$ and $d$.
first_indexed 2024-12-12T03:08:04Z
format Article
id doaj.art-0688cae4196a4204923a5d7fd6bc91ba
institution Directory Open Access Journal
issn 1576-9402
1989-4147
language English
last_indexed 2024-12-12T03:08:04Z
publishDate 2013-09-01
publisher Universitat Politècnica de València
record_format Article
series Applied General Topology
spelling doaj.art-0688cae4196a4204923a5d7fd6bc91ba2022-12-22T00:40:28ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472013-09-0114217117810.4995/agt.2013.15871371The combinatorial derivationIgor V. Protasov0Kyiv UniversityLet $G$ be a group, $\mathcal{P}_G$ be the family of all subsets of $G$. For a subset $A\subseteq G$, we put $\Delta(A)=\{g\in G:|gA\cap A|=\infty\}$. The mapping $\Delta:\mathcal{P}_G\rightarrow\mathcal{P}_G$, $A\mapsto\Delta(A)$, is called a combinatorial derivation and can be considered as an analogue of the topological derivation $d:\mathcal{P}_X\rightarrow\mathcal{P}_X$, $A\mapsto A^d$, where $X$ is a topological space and $A^d$ is the set of all limit points of $A$. Content: elementary properties, thin and almost thin subsets, partitions, inverse construction and $\Delta$-trajectories,  $\Delta$ and $d$.http://polipapers.upv.es/index.php/AGT/article/view/1587Combinatorial derivation$\Delta$-trajectorieslarge, small and thin subsets of groupspartitions of groupsStone-\v{C}ech compactification of a group
spellingShingle Igor V. Protasov
The combinatorial derivation
Applied General Topology
Combinatorial derivation
$\Delta$-trajectories
large, small and thin subsets of groups
partitions of groups
Stone-\v{C}ech compactification of a group
title The combinatorial derivation
title_full The combinatorial derivation
title_fullStr The combinatorial derivation
title_full_unstemmed The combinatorial derivation
title_short The combinatorial derivation
title_sort combinatorial derivation
topic Combinatorial derivation
$\Delta$-trajectories
large, small and thin subsets of groups
partitions of groups
Stone-\v{C}ech compactification of a group
url http://polipapers.upv.es/index.php/AGT/article/view/1587
work_keys_str_mv AT igorvprotasov thecombinatorialderivation
AT igorvprotasov combinatorialderivation