Summary: | In this paper, high-order compact-difference schemes involving a large number of mesh points in the computational stencils are used to numerically solve partial differential equations containing high-order derivatives. The test cases include a linear dispersive wave equation, the non-linear Korteweg–de Vries (KdV)-like equations, and the non-linear Kuramoto–Sivashinsky equation with known analytical solutions. It is shown that very high-order compact schemes, e.g., of 20th or 24th orders, cause a very fast drop in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> norm error, which in some cases reaches a machine precision already on relatively coarse computational meshes.
|