Estimation and Hypothesis Testing for the Parameters of Multivariate Zero Inflated Generalized Poisson Regression Model

We propose a multivariate regression model called Multivariate Zero Inflated Generalized Poisson Regression (MZIGPR) type II. This model further develops the Bivariate Zero Inflated Generalized Poisson Regression (BZIGPR) type II. This study aims to develop parameter estimation, test statistics, and...

Full description

Bibliographic Details
Main Authors: Dewi Novita Sari, Purhadi Purhadi, Santi Puteri Rahayu, Irhamah Irhamah
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/10/1876
_version_ 1797513037684408320
author Dewi Novita Sari
Purhadi Purhadi
Santi Puteri Rahayu
Irhamah Irhamah
author_facet Dewi Novita Sari
Purhadi Purhadi
Santi Puteri Rahayu
Irhamah Irhamah
author_sort Dewi Novita Sari
collection DOAJ
description We propose a multivariate regression model called Multivariate Zero Inflated Generalized Poisson Regression (MZIGPR) type II. This model further develops the Bivariate Zero Inflated Generalized Poisson Regression (BZIGPR) type II. This study aims to develop parameter estimation, test statistics, and hypothesis testing, both simultaneously and partially, for significant parameters of the MZIGPR model. The steps of the EM algorithm for obtaining the parameter estimator are also described in this article. We use Berndt–Hall–Hall–Hausman (BHHH) numerical iteration to optimize the EM algorithm. Simultaneous testing is carried out using the maximum likelihood ratio test (MLRT) and the Wald test to partially assess the hypothesis. The proposed MZIGPR model is then used to model the three response variables: the number of maternal childbirth deaths, the number of postpartum maternal deaths, and the number of stillbirths with four predictors. The units of observation are the sub-districts of the Pekalongan Residency, Indonesia. The indicate overdispersion in the data on the number of maternal childbirth deaths and stillbirths, and underdispersion in the data on the number of postpartum maternal deaths. The empirical studies show that the three response variables are significantly affected by all the predictor variables.
first_indexed 2024-03-10T06:10:04Z
format Article
id doaj.art-0694a96b9dda4676bfbc02d38249ca9b
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T06:10:04Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-0694a96b9dda4676bfbc02d38249ca9b2023-11-22T20:10:26ZengMDPI AGSymmetry2073-89942021-10-011310187610.3390/sym13101876Estimation and Hypothesis Testing for the Parameters of Multivariate Zero Inflated Generalized Poisson Regression ModelDewi Novita Sari0Purhadi Purhadi1Santi Puteri Rahayu2Irhamah Irhamah3Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, IndonesiaDepartment of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, IndonesiaDepartment of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, IndonesiaDepartment of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, IndonesiaWe propose a multivariate regression model called Multivariate Zero Inflated Generalized Poisson Regression (MZIGPR) type II. This model further develops the Bivariate Zero Inflated Generalized Poisson Regression (BZIGPR) type II. This study aims to develop parameter estimation, test statistics, and hypothesis testing, both simultaneously and partially, for significant parameters of the MZIGPR model. The steps of the EM algorithm for obtaining the parameter estimator are also described in this article. We use Berndt–Hall–Hall–Hausman (BHHH) numerical iteration to optimize the EM algorithm. Simultaneous testing is carried out using the maximum likelihood ratio test (MLRT) and the Wald test to partially assess the hypothesis. The proposed MZIGPR model is then used to model the three response variables: the number of maternal childbirth deaths, the number of postpartum maternal deaths, and the number of stillbirths with four predictors. The units of observation are the sub-districts of the Pekalongan Residency, Indonesia. The indicate overdispersion in the data on the number of maternal childbirth deaths and stillbirths, and underdispersion in the data on the number of postpartum maternal deaths. The empirical studies show that the three response variables are significantly affected by all the predictor variables.https://www.mdpi.com/2073-8994/13/10/1876MZIGPR type IIEM algorithmBHHH algorithmlikelihood ratio test
spellingShingle Dewi Novita Sari
Purhadi Purhadi
Santi Puteri Rahayu
Irhamah Irhamah
Estimation and Hypothesis Testing for the Parameters of Multivariate Zero Inflated Generalized Poisson Regression Model
Symmetry
MZIGPR type II
EM algorithm
BHHH algorithm
likelihood ratio test
title Estimation and Hypothesis Testing for the Parameters of Multivariate Zero Inflated Generalized Poisson Regression Model
title_full Estimation and Hypothesis Testing for the Parameters of Multivariate Zero Inflated Generalized Poisson Regression Model
title_fullStr Estimation and Hypothesis Testing for the Parameters of Multivariate Zero Inflated Generalized Poisson Regression Model
title_full_unstemmed Estimation and Hypothesis Testing for the Parameters of Multivariate Zero Inflated Generalized Poisson Regression Model
title_short Estimation and Hypothesis Testing for the Parameters of Multivariate Zero Inflated Generalized Poisson Regression Model
title_sort estimation and hypothesis testing for the parameters of multivariate zero inflated generalized poisson regression model
topic MZIGPR type II
EM algorithm
BHHH algorithm
likelihood ratio test
url https://www.mdpi.com/2073-8994/13/10/1876
work_keys_str_mv AT dewinovitasari estimationandhypothesistestingfortheparametersofmultivariatezeroinflatedgeneralizedpoissonregressionmodel
AT purhadipurhadi estimationandhypothesistestingfortheparametersofmultivariatezeroinflatedgeneralizedpoissonregressionmodel
AT santiputerirahayu estimationandhypothesistestingfortheparametersofmultivariatezeroinflatedgeneralizedpoissonregressionmodel
AT irhamahirhamah estimationandhypothesistestingfortheparametersofmultivariatezeroinflatedgeneralizedpoissonregressionmodel