Parametric oscillation and amplification with gate controlled capacitor-within-capacitor
Abstract Parametric oscillators and parametric amplifiers are known for their ‘quiet’ operation and find new applications in quantum circuitry. A Capacitor-within-Capacitor (CWC) is a nested electronic element that has two components: the cell (e.g., the outer capacitor) and the gate (e.g., the inne...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2021-05-01
|
Series: | SN Applied Sciences |
Subjects: | |
Online Access: | https://doi.org/10.1007/s42452-021-04665-7 |
Summary: | Abstract Parametric oscillators and parametric amplifiers are known for their ‘quiet’ operation and find new applications in quantum circuitry. A Capacitor-within-Capacitor (CWC) is a nested electronic element that has two components: the cell (e.g., the outer capacitor) and the gate (e.g., the inner capacitor). Here we provide analysis and experiments on diode-interfaced, CWC that exhibit parametric oscillations and parametric amplifications. By replacing the diode with a doped nano-graphene junction, we demonstrated a new structure whose doping may be electronically and chemically controlled. Advantages of these elements are in their simplicity, large relative capacitance change (of the order of 50%), separation of pump and signal channels and possibility for large integration. |
---|---|
ISSN: | 2523-3963 2523-3971 |