Multidecadal trend analysis of in situ aerosol radiative properties around the world

<p>In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coef...

Full description

Bibliographic Details
Main Authors: M. Collaud Coen, E. Andrews, A. Alastuey, T. P. Arsov, J. Backman, B. T. Brem, N. Bukowiecki, C. Couret, K. Eleftheriadis, H. Flentje, M. Fiebig, M. Gysel-Beer, J. L. Hand, A. Hoffer, R. Hooda, C. Hueglin, W. Joubert, M. Keywood, J. E. Kim, S.-W. Kim, C. Labuschagne, N.-H. Lin, Y. Lin, C. Lund Myhre, K. Luoma, H. Lyamani, A. Marinoni, O. L. Mayol-Bracero, N. Mihalopoulos, M. Pandolfi, N. Prats, A. J. Prenni, J.-P. Putaud, L. Ries, F. Reisen, K. Sellegri, S. Sharma, P. Sheridan, J. P. Sherman, J. Sun, G. Titos, E. Torres, T. Tuch, R. Weller, A. Wiedensohler, P. Zieger, P. Laj
Format: Article
Language:English
Published: Copernicus Publications 2020-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/20/8867/2020/acp-20-8867-2020.pdf
_version_ 1818304178857967616
author M. Collaud Coen
E. Andrews
E. Andrews
A. Alastuey
T. P. Arsov
J. Backman
B. T. Brem
N. Bukowiecki
C. Couret
K. Eleftheriadis
H. Flentje
M. Fiebig
M. Gysel-Beer
J. L. Hand
A. Hoffer
R. Hooda
R. Hooda
C. Hueglin
W. Joubert
M. Keywood
J. E. Kim
S.-W. Kim
C. Labuschagne
N.-H. Lin
Y. Lin
C. Lund Myhre
K. Luoma
H. Lyamani
H. Lyamani
A. Marinoni
O. L. Mayol-Bracero
N. Mihalopoulos
M. Pandolfi
N. Prats
A. J. Prenni
J.-P. Putaud
L. Ries
F. Reisen
K. Sellegri
S. Sharma
P. Sheridan
J. P. Sherman
J. Sun
G. Titos
G. Titos
E. Torres
T. Tuch
R. Weller
A. Wiedensohler
P. Zieger
P. Zieger
P. Laj
P. Laj
P. Laj
author_facet M. Collaud Coen
E. Andrews
E. Andrews
A. Alastuey
T. P. Arsov
J. Backman
B. T. Brem
N. Bukowiecki
C. Couret
K. Eleftheriadis
H. Flentje
M. Fiebig
M. Gysel-Beer
J. L. Hand
A. Hoffer
R. Hooda
R. Hooda
C. Hueglin
W. Joubert
M. Keywood
J. E. Kim
S.-W. Kim
C. Labuschagne
N.-H. Lin
Y. Lin
C. Lund Myhre
K. Luoma
H. Lyamani
H. Lyamani
A. Marinoni
O. L. Mayol-Bracero
N. Mihalopoulos
M. Pandolfi
N. Prats
A. J. Prenni
J.-P. Putaud
L. Ries
F. Reisen
K. Sellegri
S. Sharma
P. Sheridan
J. P. Sherman
J. Sun
G. Titos
G. Titos
E. Torres
T. Tuch
R. Weller
A. Wiedensohler
P. Zieger
P. Zieger
P. Laj
P. Laj
P. Laj
author_sort M. Collaud Coen
collection DOAJ
description <p>In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52&thinsp;% of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22&thinsp;% of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26&thinsp;% of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.</p>
first_indexed 2024-12-13T06:06:34Z
format Article
id doaj.art-06a642d244ef44f5bd1d4eee30315512
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-13T06:06:34Z
publishDate 2020-07-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-06a642d244ef44f5bd1d4eee303155122022-12-21T23:57:13ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-07-01208867890810.5194/acp-20-8867-2020Multidecadal trend analysis of in situ aerosol radiative properties around the worldM. Collaud Coen0E. Andrews1E. Andrews2A. Alastuey3T. P. Arsov4J. Backman5B. T. Brem6N. Bukowiecki7C. Couret8K. Eleftheriadis9H. Flentje10M. Fiebig11M. Gysel-Beer12J. L. Hand13A. Hoffer14R. Hooda15R. Hooda16C. Hueglin17W. Joubert18M. Keywood19J. E. Kim20S.-W. Kim21C. Labuschagne22N.-H. Lin23Y. Lin24C. Lund Myhre25K. Luoma26H. Lyamani27H. Lyamani28A. Marinoni29O. L. Mayol-Bracero30N. Mihalopoulos31M. Pandolfi32N. Prats33A. J. Prenni34J.-P. Putaud35L. Ries36F. Reisen37K. Sellegri38S. Sharma39P. Sheridan40J. P. Sherman41J. Sun42G. Titos43G. Titos44E. Torres45T. Tuch46R. Weller47A. Wiedensohler48P. Zieger49P. Zieger50P. Laj51P. Laj52P. Laj53Federal Office of Meteorology and Climatology, MeteoSwiss, Payerne, SwitzerlandCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USANOAA/Global Monitoring Laboratory, Boulder, CO, USAInstitute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, SpainInstitute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, BulgariaAtmospheric composition research, Finnish Meteorological Institute, Helsinki, FinlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen PSI, SwitzerlandAtmospheric Sciences, Department of Environmental Sciences, University of Basel, Basel, SwitzerlandGerman Environment Agency (UBA), Zugspitze, GermanyInstitute of Nuclear and Radiological Science & Technology, Energy & Safety N.C.S.R. “Demokritos”, Attiki, GreeceGerman Weather Service, Meteorological Observatory Hohenpeissenberg, Hohenpeißenberg, GermanyNILU – Norwegian Institute for Air Research, Kjeller, NorwayLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen PSI, SwitzerlandCooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USAMTA-PE Air Chemistry Research Group, Veszprém, HungaryAtmospheric composition research, Finnish Meteorological Institute, Helsinki, FinlandThe Energy and Resources Institute, IHC, Lodhi Road, New Delhi, IndiaEmpa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, SwitzerlandSouth African Weather Service, Research Department, Stellenbosch, South AfricaCSIRO Oceans and Atmosphere, PMB1 Aspendale VIC, AustraliaEnvironmental Meteorology Research Division, National Institute of Meteorological Sciences, Seogwipo, KoreaSchool of Earth and Environmental Sciences, Seoul National University, Seoul, KoreaSouth African Weather Service, Research Department, Stellenbosch, South AfricaDepartment of Atmospheric Sciences, National Central University, Taoyuan, TaiwanNILU – Norwegian Institute for Air Research, Kjeller, NorwayNILU – Norwegian Institute for Air Research, Kjeller, NorwayInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, FinlandAndalusian Institute for Earth System Research, IISTA-CEAMA, University of Granada, Junta de Andalucía, Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainInstitute of Atmospheric Sciences and Climate, National Research Council of Italy, Bologna, ItalyUniversity of Puerto Rico, Rio Piedras Campus, San Juan, Puerto RicoEnvironmental Chemistry Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, GreeceInstitute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, SpainIzaña Atmospheric Research Center, State Meteorological Agency (AEMET), Tenerife, SpainNational Park Service, Air Resources Division, Lakewood, CO, USAEuropean Commission, Joint Research Centre (JRC), Ispra, ItalyGerman Environment Agency (UBA), Zugspitze, GermanyCSIRO Oceans and Atmosphere, PMB1 Aspendale VIC, AustraliaUniversité Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand, FranceClimate Chemistry Measurements Research, Climate Research Division, Environment and Climate Change Canada, Toronto, CanadaNOAA/Global Monitoring Laboratory, Boulder, CO, USADepartment of Physics and Astronomy, Appalachian State University, Boone, NC, USAState Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, ChinaAndalusian Institute for Earth System Research, IISTA-CEAMA, University of Granada, Junta de Andalucía, Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainUniversity of Puerto Rico, Rio Piedras Campus, San Juan, Puerto RicoLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyGlaciology Department, Alfred-Wegener-Institut Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyDepartment of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SwedenBolin Centre for Climate Research, Stockholm University, Stockholm, SwedenUniv. Grenoble Alpes, CNRS, IRD, Grenoble-INP, IGE, 38000 Grenoble, FranceCNR-ISAC, National Research Council of Italy – Institute of Atmospheric Sciences and Climate, Bologna, ItalyUniversity of Helsinki, Atmospheric Science division, Helsinki, Finland<p>In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52&thinsp;% of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22&thinsp;% of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26&thinsp;% of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.</p>https://www.atmos-chem-phys.net/20/8867/2020/acp-20-8867-2020.pdf
spellingShingle M. Collaud Coen
E. Andrews
E. Andrews
A. Alastuey
T. P. Arsov
J. Backman
B. T. Brem
N. Bukowiecki
C. Couret
K. Eleftheriadis
H. Flentje
M. Fiebig
M. Gysel-Beer
J. L. Hand
A. Hoffer
R. Hooda
R. Hooda
C. Hueglin
W. Joubert
M. Keywood
J. E. Kim
S.-W. Kim
C. Labuschagne
N.-H. Lin
Y. Lin
C. Lund Myhre
K. Luoma
H. Lyamani
H. Lyamani
A. Marinoni
O. L. Mayol-Bracero
N. Mihalopoulos
M. Pandolfi
N. Prats
A. J. Prenni
J.-P. Putaud
L. Ries
F. Reisen
K. Sellegri
S. Sharma
P. Sheridan
J. P. Sherman
J. Sun
G. Titos
G. Titos
E. Torres
T. Tuch
R. Weller
A. Wiedensohler
P. Zieger
P. Zieger
P. Laj
P. Laj
P. Laj
Multidecadal trend analysis of in situ aerosol radiative properties around the world
Atmospheric Chemistry and Physics
title Multidecadal trend analysis of in situ aerosol radiative properties around the world
title_full Multidecadal trend analysis of in situ aerosol radiative properties around the world
title_fullStr Multidecadal trend analysis of in situ aerosol radiative properties around the world
title_full_unstemmed Multidecadal trend analysis of in situ aerosol radiative properties around the world
title_short Multidecadal trend analysis of in situ aerosol radiative properties around the world
title_sort multidecadal trend analysis of in situ aerosol radiative properties around the world
url https://www.atmos-chem-phys.net/20/8867/2020/acp-20-8867-2020.pdf
work_keys_str_mv AT mcollaudcoen multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT eandrews multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT eandrews multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT aalastuey multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT tparsov multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT jbackman multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT btbrem multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT nbukowiecki multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT ccouret multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT keleftheriadis multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT hflentje multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT mfiebig multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT mgyselbeer multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT jlhand multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT ahoffer multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT rhooda multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT rhooda multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT chueglin multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT wjoubert multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT mkeywood multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT jekim multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT swkim multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT clabuschagne multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT nhlin multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT ylin multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT clundmyhre multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT kluoma multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT hlyamani multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT hlyamani multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT amarinoni multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT olmayolbracero multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT nmihalopoulos multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT mpandolfi multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT nprats multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT ajprenni multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT jpputaud multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT lries multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT freisen multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT ksellegri multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT ssharma multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT psheridan multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT jpsherman multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT jsun multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT gtitos multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT gtitos multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT etorres multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT ttuch multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT rweller multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT awiedensohler multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT pzieger multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT pzieger multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT plaj multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT plaj multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld
AT plaj multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld