Multidecadal trend analysis of in situ aerosol radiative properties around the world
<p>In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coef...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-07-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/20/8867/2020/acp-20-8867-2020.pdf |
_version_ | 1818304178857967616 |
---|---|
author | M. Collaud Coen E. Andrews E. Andrews A. Alastuey T. P. Arsov J. Backman B. T. Brem N. Bukowiecki C. Couret K. Eleftheriadis H. Flentje M. Fiebig M. Gysel-Beer J. L. Hand A. Hoffer R. Hooda R. Hooda C. Hueglin W. Joubert M. Keywood J. E. Kim S.-W. Kim C. Labuschagne N.-H. Lin Y. Lin C. Lund Myhre K. Luoma H. Lyamani H. Lyamani A. Marinoni O. L. Mayol-Bracero N. Mihalopoulos M. Pandolfi N. Prats A. J. Prenni J.-P. Putaud L. Ries F. Reisen K. Sellegri S. Sharma P. Sheridan J. P. Sherman J. Sun G. Titos G. Titos E. Torres T. Tuch R. Weller A. Wiedensohler P. Zieger P. Zieger P. Laj P. Laj P. Laj |
author_facet | M. Collaud Coen E. Andrews E. Andrews A. Alastuey T. P. Arsov J. Backman B. T. Brem N. Bukowiecki C. Couret K. Eleftheriadis H. Flentje M. Fiebig M. Gysel-Beer J. L. Hand A. Hoffer R. Hooda R. Hooda C. Hueglin W. Joubert M. Keywood J. E. Kim S.-W. Kim C. Labuschagne N.-H. Lin Y. Lin C. Lund Myhre K. Luoma H. Lyamani H. Lyamani A. Marinoni O. L. Mayol-Bracero N. Mihalopoulos M. Pandolfi N. Prats A. J. Prenni J.-P. Putaud L. Ries F. Reisen K. Sellegri S. Sharma P. Sheridan J. P. Sherman J. Sun G. Titos G. Titos E. Torres T. Tuch R. Weller A. Wiedensohler P. Zieger P. Zieger P. Laj P. Laj P. Laj |
author_sort | M. Collaud Coen |
collection | DOAJ |
description | <p>In order to assess the evolution of aerosol parameters affecting climate
change, a long-term trend analysis of aerosol optical properties was
performed on time series from 52 stations situated across five continents.
The time series of measured scattering, backscattering and absorption
coefficients as well as the derived single scattering albedo, backscattering
fraction, scattering and absorption Ångström exponents covered at
least 10 years and up to 40 years for some stations. The non-parametric
seasonal Mann–Kendall (MK) statistical test associated with several
pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically
significant trends and the assessment of advantages and limitations of each
method. Currently, scattering and backscattering coefficient trends are
mostly decreasing in Europe and North America and are not statistically
significant in Asia, while polar stations exhibit a mix of increasing and
decreasing trends. A few increasing trends are also found at some stations
in North America and Australia. Absorption coefficient time series also
exhibit primarily decreasing trends. For single scattering albedo, 52 % of
the sites exhibit statistically significant positive trends, mostly in Asia,
eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North
America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall
time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant
increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of
the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically
significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is
very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all
stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight
into potential aerosol effects on climate changes.</p> |
first_indexed | 2024-12-13T06:06:34Z |
format | Article |
id | doaj.art-06a642d244ef44f5bd1d4eee30315512 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-13T06:06:34Z |
publishDate | 2020-07-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-06a642d244ef44f5bd1d4eee303155122022-12-21T23:57:13ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-07-01208867890810.5194/acp-20-8867-2020Multidecadal trend analysis of in situ aerosol radiative properties around the worldM. Collaud Coen0E. Andrews1E. Andrews2A. Alastuey3T. P. Arsov4J. Backman5B. T. Brem6N. Bukowiecki7C. Couret8K. Eleftheriadis9H. Flentje10M. Fiebig11M. Gysel-Beer12J. L. Hand13A. Hoffer14R. Hooda15R. Hooda16C. Hueglin17W. Joubert18M. Keywood19J. E. Kim20S.-W. Kim21C. Labuschagne22N.-H. Lin23Y. Lin24C. Lund Myhre25K. Luoma26H. Lyamani27H. Lyamani28A. Marinoni29O. L. Mayol-Bracero30N. Mihalopoulos31M. Pandolfi32N. Prats33A. J. Prenni34J.-P. Putaud35L. Ries36F. Reisen37K. Sellegri38S. Sharma39P. Sheridan40J. P. Sherman41J. Sun42G. Titos43G. Titos44E. Torres45T. Tuch46R. Weller47A. Wiedensohler48P. Zieger49P. Zieger50P. Laj51P. Laj52P. Laj53Federal Office of Meteorology and Climatology, MeteoSwiss, Payerne, SwitzerlandCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USANOAA/Global Monitoring Laboratory, Boulder, CO, USAInstitute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, SpainInstitute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, BulgariaAtmospheric composition research, Finnish Meteorological Institute, Helsinki, FinlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen PSI, SwitzerlandAtmospheric Sciences, Department of Environmental Sciences, University of Basel, Basel, SwitzerlandGerman Environment Agency (UBA), Zugspitze, GermanyInstitute of Nuclear and Radiological Science & Technology, Energy & Safety N.C.S.R. “Demokritos”, Attiki, GreeceGerman Weather Service, Meteorological Observatory Hohenpeissenberg, Hohenpeißenberg, GermanyNILU – Norwegian Institute for Air Research, Kjeller, NorwayLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen PSI, SwitzerlandCooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USAMTA-PE Air Chemistry Research Group, Veszprém, HungaryAtmospheric composition research, Finnish Meteorological Institute, Helsinki, FinlandThe Energy and Resources Institute, IHC, Lodhi Road, New Delhi, IndiaEmpa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, SwitzerlandSouth African Weather Service, Research Department, Stellenbosch, South AfricaCSIRO Oceans and Atmosphere, PMB1 Aspendale VIC, AustraliaEnvironmental Meteorology Research Division, National Institute of Meteorological Sciences, Seogwipo, KoreaSchool of Earth and Environmental Sciences, Seoul National University, Seoul, KoreaSouth African Weather Service, Research Department, Stellenbosch, South AfricaDepartment of Atmospheric Sciences, National Central University, Taoyuan, TaiwanNILU – Norwegian Institute for Air Research, Kjeller, NorwayNILU – Norwegian Institute for Air Research, Kjeller, NorwayInstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, FinlandAndalusian Institute for Earth System Research, IISTA-CEAMA, University of Granada, Junta de Andalucía, Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainInstitute of Atmospheric Sciences and Climate, National Research Council of Italy, Bologna, ItalyUniversity of Puerto Rico, Rio Piedras Campus, San Juan, Puerto RicoEnvironmental Chemistry Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, GreeceInstitute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, SpainIzaña Atmospheric Research Center, State Meteorological Agency (AEMET), Tenerife, SpainNational Park Service, Air Resources Division, Lakewood, CO, USAEuropean Commission, Joint Research Centre (JRC), Ispra, ItalyGerman Environment Agency (UBA), Zugspitze, GermanyCSIRO Oceans and Atmosphere, PMB1 Aspendale VIC, AustraliaUniversité Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand, FranceClimate Chemistry Measurements Research, Climate Research Division, Environment and Climate Change Canada, Toronto, CanadaNOAA/Global Monitoring Laboratory, Boulder, CO, USADepartment of Physics and Astronomy, Appalachian State University, Boone, NC, USAState Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, ChinaAndalusian Institute for Earth System Research, IISTA-CEAMA, University of Granada, Junta de Andalucía, Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainUniversity of Puerto Rico, Rio Piedras Campus, San Juan, Puerto RicoLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyGlaciology Department, Alfred-Wegener-Institut Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyDepartment of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SwedenBolin Centre for Climate Research, Stockholm University, Stockholm, SwedenUniv. Grenoble Alpes, CNRS, IRD, Grenoble-INP, IGE, 38000 Grenoble, FranceCNR-ISAC, National Research Council of Italy – Institute of Atmospheric Sciences and Climate, Bologna, ItalyUniversity of Helsinki, Atmospheric Science division, Helsinki, Finland<p>In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.</p>https://www.atmos-chem-phys.net/20/8867/2020/acp-20-8867-2020.pdf |
spellingShingle | M. Collaud Coen E. Andrews E. Andrews A. Alastuey T. P. Arsov J. Backman B. T. Brem N. Bukowiecki C. Couret K. Eleftheriadis H. Flentje M. Fiebig M. Gysel-Beer J. L. Hand A. Hoffer R. Hooda R. Hooda C. Hueglin W. Joubert M. Keywood J. E. Kim S.-W. Kim C. Labuschagne N.-H. Lin Y. Lin C. Lund Myhre K. Luoma H. Lyamani H. Lyamani A. Marinoni O. L. Mayol-Bracero N. Mihalopoulos M. Pandolfi N. Prats A. J. Prenni J.-P. Putaud L. Ries F. Reisen K. Sellegri S. Sharma P. Sheridan J. P. Sherman J. Sun G. Titos G. Titos E. Torres T. Tuch R. Weller A. Wiedensohler P. Zieger P. Zieger P. Laj P. Laj P. Laj Multidecadal trend analysis of in situ aerosol radiative properties around the world Atmospheric Chemistry and Physics |
title | Multidecadal trend analysis of in situ aerosol radiative properties around the world |
title_full | Multidecadal trend analysis of in situ aerosol radiative properties around the world |
title_fullStr | Multidecadal trend analysis of in situ aerosol radiative properties around the world |
title_full_unstemmed | Multidecadal trend analysis of in situ aerosol radiative properties around the world |
title_short | Multidecadal trend analysis of in situ aerosol radiative properties around the world |
title_sort | multidecadal trend analysis of in situ aerosol radiative properties around the world |
url | https://www.atmos-chem-phys.net/20/8867/2020/acp-20-8867-2020.pdf |
work_keys_str_mv | AT mcollaudcoen multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT eandrews multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT eandrews multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT aalastuey multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT tparsov multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT jbackman multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT btbrem multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT nbukowiecki multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT ccouret multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT keleftheriadis multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT hflentje multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT mfiebig multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT mgyselbeer multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT jlhand multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT ahoffer multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT rhooda multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT rhooda multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT chueglin multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT wjoubert multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT mkeywood multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT jekim multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT swkim multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT clabuschagne multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT nhlin multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT ylin multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT clundmyhre multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT kluoma multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT hlyamani multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT hlyamani multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT amarinoni multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT olmayolbracero multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT nmihalopoulos multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT mpandolfi multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT nprats multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT ajprenni multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT jpputaud multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT lries multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT freisen multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT ksellegri multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT ssharma multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT psheridan multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT jpsherman multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT jsun multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT gtitos multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT gtitos multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT etorres multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT ttuch multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT rweller multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT awiedensohler multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT pzieger multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT pzieger multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT plaj multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT plaj multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld AT plaj multidecadaltrendanalysisofinsituaerosolradiativepropertiesaroundtheworld |