Potentials of Thermal Energy Storage Integrated into Steam Power Plants

For conventional power plants, the integration of thermal energy storage opens up a promising opportunity to meet future technical requirements in terms of flexibility while at the same time improving cost-effectiveness. In the FLEXI- TES joint project, the flexibilization of coal-fired steam power...

Full description

Bibliographic Details
Main Authors: Michael Krüger, Selman Muslubas, Thomas Loeper, Freerk Klasing, Philipp Knödler, Christian Mielke
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/9/2226
Description
Summary:For conventional power plants, the integration of thermal energy storage opens up a promising opportunity to meet future technical requirements in terms of flexibility while at the same time improving cost-effectiveness. In the FLEXI- TES joint project, the flexibilization of coal-fired steam power plants by integrating thermal energy storage (TES) into the power plant process is being investigated. In the concept phase at the beginning of the research project, various storage integration concepts were developed and evaluated. Finally, three lead concepts with different storage technologies and integration points in the power plant were identified. By means of stationary system simulations, the changes of net power output during charging and discharging as well as different storage efficiencies were calculated. Depending on the concept and the operating strategy, a reduction of the minimum load by up to 4% of the net capacity during charging and a load increase by up to 5% of the net capacity during discharging are possible. Storage efficiencies of up to 80% can be achieved.
ISSN:1996-1073