Study of Cellulose Nanocrystals and Zinc Nitrate Hexahydrate Addition in Chitosan Hydrogels

In this study, chitosan hydrogels were produced with 0, 2, 4 and 6 wt% of cellulose nanocrystals (CNC) using hexahydrate zinc nitrate (Zn(NO3)2.6H2O) as a catalyst for chitosan crosslinking reaction. CNC´s size was estimated by dynamic light scattering (DLS) and surface charge by zeta potential. Hyd...

Full description

Bibliographic Details
Main Authors: Sheila de Oliveira Ferreira, Thaís Larissa do Amaral Montanheiro, Larissa Stieven Montagna, Lilia Müller Guerrini, Ana Paula Lemes
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2019-04-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700202&tlng=en
Description
Summary:In this study, chitosan hydrogels were produced with 0, 2, 4 and 6 wt% of cellulose nanocrystals (CNC) using hexahydrate zinc nitrate (Zn(NO3)2.6H2O) as a catalyst for chitosan crosslinking reaction. CNC´s size was estimated by dynamic light scattering (DLS) and surface charge by zeta potential. Hydrogels were characterized by rotational rheometer, swelling test, uniaxial compression test, in vitro degradation, scanning electron microscopy (SEM) and microtomography. Results showed that zinc nitrate and CNC addition did not influence mechanical properties, degradation, and morphology of the hydrogels. However, zinc nitrate decreased 36.54% of the gel time and 41.37% of the swelling degree, and increased the crosslinking degree of the chitosan hydrogels, proving not only its catalytic effect but also its participation in the crosslinking reaction. Porosity was slightly reduced after addition of zinc nitrate and incorporation of CNC. In the mechanism of crosslinking reaction, a competition between CNC and zinc nitrate was observed.
ISSN:1516-1439