Resveratrol Inhibits Oxidative Stress and Regulates M1/M2-Type Polarization of Microglia via Mediation of the Nrf2/Shh Signaling Cascade after OGD/R Injury In Vitro

Aims: Microglia are closely related to the occurrence and development of oxidative stress. Cerebral ischemia leads to abnormal activation of microglia. Resveratrol can regulate M1/M2-type microglia polarization, but the underlying mechanism is not well understood, although the Nrf2 and Shh signaling...

Full description

Bibliographic Details
Main Authors: Jie Liu, Hongyan Liao, Yue Chen, Huimin Zhu, Xuemei Li, Jing Liu, Qin Xiang, Fanling Zeng, Qin Yang
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Journal of Personalized Medicine
Subjects:
Online Access:https://www.mdpi.com/2075-4426/12/12/2087
Description
Summary:Aims: Microglia are closely related to the occurrence and development of oxidative stress. Cerebral ischemia leads to abnormal activation of microglia. Resveratrol can regulate M1/M2-type microglia polarization, but the underlying mechanism is not well understood, although the Nrf2 and Shh signaling pathways may be involved. Given that resveratrol activates Shh, the present study examined whether this is mediated by Nrf2 signaling. Methods: N9 microglia were pretreated with drugs before oxygen-glucose deprivation/reoxygenation (OGD/R). HT22 neurons were also used for conditional co-culture with microglia. Cell viability was measured by CCK-8 assay. MDA levels and SOD activity in the supernatant were detected by TBA and WST-1, respectively. Immunofluorescence detected Nrf2 and Gli1 nuclear translocation. The levels of CD206, Arg1, iNOS, TNF-α, Nrf2, HO-1, NQO1, Shh, Ptc, Smo, Gli1 protein and mRNA were measured by Western blotting or RT-qPCR. Annexin V-FITC Flow Cytometric Analysis detected apoptosis. Results: Resveratrol and Nrf2 activator RTA-408 enhanced the viability of microglia, reduced oxidative stress, promoted M2-type microglia polarization and activated Nrf2 and Shh signaling. ML385, a selective inhibitor of Nrf2, decreased the viability of microglia, aggravated oxidative stress, promoted M1-type microglia polarization and inhibited Nrf2 and Shh signaling. Moreover, resveratrol and RTA-408-treated microglia can reduce the apoptosis and increase the viability of HT22 neurons, while ML385-treated microglia aggravated the apoptosis and weakened the viability of HT22 neurons. Conclusions: These results demonstrated that resveratrol may inhibit oxidative stress, regulate M1/M2-type polarization of microglia and decrease neuronal injury in conditional co-culture of neurons and microglia via the mediation of the Nrf2/Shh signaling cascade after OGD/R injury <i>in vitro</i>.
ISSN:2075-4426