Summary: | Abstract This work investigated the effect of thermal treatment in an autoclave on the chemical, physical, and morphological properties of lignocellulosic fibers from açaí (Euterpe oleracea Mart), and the behavior of this treated fiber in polypropylene (PP) matrix composites with polypropylene-graft-maleic anhydride (PPgMA) as the coupling agent. The treated and untreated fibers were characterized by chemical composition, x-ray diffraction, FTIR spectroscopy, and thermogravimetry, scanning electron microscopy and tensile tests were carried out for the composites. The results showed that the thermal treatment modified the hemicellulose and lignin content and increased the fiber surface roughness, without compromising the thermal stability. The composite prepared with thermally treated fibers and PPgMA exhibited an increase in tensile strength but a reduction in tensile modulus. In conclusion, the thermal treatment of vegetable fiber is a promising technique for improving the performance of composites.
|