Duplication at 19q13.32q13.33 Segregating with Neuropsychiatric Phenotype in a Three-Generation Family: Towards the Definition of a Critical Region

Chromosomal submicroscopic imbalances represent well-known causes of neurodevelopmental disorders. In some cases, these can cause specific autosomal dominant syndromes, with high-to-complete penetrance and de novo occurrence of the variant. In other cases, they result in non-syndromic neurodevelopme...

Full description

Bibliographic Details
Main Authors: Daniele Guadagnolo, Gioia Mastromoro, Barbara Torres, Enrica Marchionni, Francesca di Palma, Marina Goldoni, Dario Cocciadiferro, Antonio Novelli, Laura Bernardini, Antonio Pizzuti
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Genes
Subjects:
Online Access:https://www.mdpi.com/2073-4425/14/12/2157
Description
Summary:Chromosomal submicroscopic imbalances represent well-known causes of neurodevelopmental disorders. In some cases, these can cause specific autosomal dominant syndromes, with high-to-complete penetrance and de novo occurrence of the variant. In other cases, they result in non-syndromic neurodevelopmental disorders, often acting as moderate-penetrance risk factors, possibly inherited from unaffected parents. We describe a three-generation family with non-syndromic neuropsychiatric features segregating with a novel 19q13.32q13.33 microduplication. The propositus was a 28-month-old male ascertained for psychomotor delay, with no dysmorphic features or malformations. His mother had Attention-Deficit/Hyperactivity Disorder and a learning disability. The maternal uncle had an intellectual disability. Chromosomal microarray analysis identified a 969 kb 19q13.32q13.33 microduplication in the proband. The variant segregated in the mother, the uncle, and the maternal grandmother of the proband, who also presented neuropsychiatric disorders. Fragile-X Syndrome testing was negative. Exome Sequencing did not identify Pathogenic/Likely Pathogenic variants. Imbalances involving 19q13.32 and 19q13.33 are associated with neurodevelopmental delay. A review of the reported microduplications allowed to propose <i>BICRA</i> (MIM *605690) and <i>KPTN</i> (MIM *615620) as candidates for the neurodevelopmental delay susceptibility in 19q13.32q13.33 copy number gains. The peculiarities of this case are the small extension of the duplication, the three-generation segregation, and the full penetrance of the phenotype.
ISSN:2073-4425