Heisenberg scaling precision in multi-mode distributed quantum metrology
We consider the estimation of an arbitrary parameter φ , such as the temperature or a magnetic field, affecting in a distributed manner the components of an arbitrary linear optical passive network, such as an integrated chip. We demonstrate that Heisenberg scaling precision (i.e. of the order of 1/...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2021-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/abf67f |
_version_ | 1827872667319926784 |
---|---|
author | Giovanni Gramegna Danilo Triggiani Paolo Facchi Frank A Narducci Vincenzo Tamma |
author_facet | Giovanni Gramegna Danilo Triggiani Paolo Facchi Frank A Narducci Vincenzo Tamma |
author_sort | Giovanni Gramegna |
collection | DOAJ |
description | We consider the estimation of an arbitrary parameter φ , such as the temperature or a magnetic field, affecting in a distributed manner the components of an arbitrary linear optical passive network, such as an integrated chip. We demonstrate that Heisenberg scaling precision (i.e. of the order of 1/ N , where N is the number of probe photons) can be achieved without any iterative adaptation of the interferometer hardware and by using only a simple, single, squeezed light source and well-established homodyne measurements techniques. Furthermore, no constraint on the possible values of the parameter is needed but only a preliminary shot-noise estimation (i.e. with a precision of $\sqrt{N}$ ) easily achievable without any quantum resources. Indeed, such a classical knowledge of the parameter is enough to prepare a single, suitable optical stage either at the input or the output of the network to monitor with Heisenberg-limited precision any variation of the parameter to the order of $1/\sqrt{N}$ without the need to iteratively modify such a stage. |
first_indexed | 2024-03-12T16:28:03Z |
format | Article |
id | doaj.art-06f35b6952cc4e39bbae3e272224e0e5 |
institution | Directory Open Access Journal |
issn | 1367-2630 |
language | English |
last_indexed | 2024-03-12T16:28:03Z |
publishDate | 2021-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | New Journal of Physics |
spelling | doaj.art-06f35b6952cc4e39bbae3e272224e0e52023-08-08T15:37:47ZengIOP PublishingNew Journal of Physics1367-26302021-01-0123505300210.1088/1367-2630/abf67fHeisenberg scaling precision in multi-mode distributed quantum metrologyGiovanni Gramegna0https://orcid.org/0000-0001-7532-1704Danilo Triggiani1https://orcid.org/0000-0001-8851-6391Paolo Facchi2https://orcid.org/0000-0001-9152-6515Frank A Narducci3Vincenzo Tamma4https://orcid.org/0000-0002-1963-3057Dipartimento di Fisica and MECENAS, Università di Bari , I-70126 Bari, Italy; INFN , Sezione di Bari, I-70126 Bari, ItalySchool of Mathematics and Physics, University of Portsmouth , Portsmouth PO1 3QL, United KingdomDipartimento di Fisica and MECENAS, Università di Bari , I-70126 Bari, Italy; INFN , Sezione di Bari, I-70126 Bari, ItalyDepartment of Physics, Naval Postgraduate School , Monterey, CA, United States of AmericaSchool of Mathematics and Physics, University of Portsmouth , Portsmouth PO1 3QL, United Kingdom; Institute of Cosmology and Gravitation, University of Portsmouth , Portsmouth PO1 3FX, United KingdomWe consider the estimation of an arbitrary parameter φ , such as the temperature or a magnetic field, affecting in a distributed manner the components of an arbitrary linear optical passive network, such as an integrated chip. We demonstrate that Heisenberg scaling precision (i.e. of the order of 1/ N , where N is the number of probe photons) can be achieved without any iterative adaptation of the interferometer hardware and by using only a simple, single, squeezed light source and well-established homodyne measurements techniques. Furthermore, no constraint on the possible values of the parameter is needed but only a preliminary shot-noise estimation (i.e. with a precision of $\sqrt{N}$ ) easily achievable without any quantum resources. Indeed, such a classical knowledge of the parameter is enough to prepare a single, suitable optical stage either at the input or the output of the network to monitor with Heisenberg-limited precision any variation of the parameter to the order of $1/\sqrt{N}$ without the need to iteratively modify such a stage.https://doi.org/10.1088/1367-2630/abf67fquantum metrologydistributed metrologyHeisenberg scalingGaussian metrologysqueezinghomodyne detection |
spellingShingle | Giovanni Gramegna Danilo Triggiani Paolo Facchi Frank A Narducci Vincenzo Tamma Heisenberg scaling precision in multi-mode distributed quantum metrology New Journal of Physics quantum metrology distributed metrology Heisenberg scaling Gaussian metrology squeezing homodyne detection |
title | Heisenberg scaling precision in multi-mode distributed quantum metrology |
title_full | Heisenberg scaling precision in multi-mode distributed quantum metrology |
title_fullStr | Heisenberg scaling precision in multi-mode distributed quantum metrology |
title_full_unstemmed | Heisenberg scaling precision in multi-mode distributed quantum metrology |
title_short | Heisenberg scaling precision in multi-mode distributed quantum metrology |
title_sort | heisenberg scaling precision in multi mode distributed quantum metrology |
topic | quantum metrology distributed metrology Heisenberg scaling Gaussian metrology squeezing homodyne detection |
url | https://doi.org/10.1088/1367-2630/abf67f |
work_keys_str_mv | AT giovannigramegna heisenbergscalingprecisioninmultimodedistributedquantummetrology AT danilotriggiani heisenbergscalingprecisioninmultimodedistributedquantummetrology AT paolofacchi heisenbergscalingprecisioninmultimodedistributedquantummetrology AT frankanarducci heisenbergscalingprecisioninmultimodedistributedquantummetrology AT vincenzotamma heisenbergscalingprecisioninmultimodedistributedquantummetrology |