Optimal Reserve and Energy Scheduling for a Virtual Power Plant Considering Reserve Activation Probability
With the increasing share of variable and limitedly predictable renewable energy in power systems worldwide, ensuring reserve capacity to maintain the balance of supply and demand becomes more important. On the other hand, the development of the virtual power plant model (VPP) allows renewable sourc...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-10-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/20/9717 |
_version_ | 1797515330323480576 |
---|---|
author | Huy Nguyen Duc Nhung Nguyen Hong |
author_facet | Huy Nguyen Duc Nhung Nguyen Hong |
author_sort | Huy Nguyen Duc |
collection | DOAJ |
description | With the increasing share of variable and limitedly predictable renewable energy in power systems worldwide, ensuring reserve capacity to maintain the balance of supply and demand becomes more important. On the other hand, the development of the virtual power plant model (VPP) allows renewable sources and energy storage to participate in reserve service. This paper addresses the optimal reserve bidding strategy problem of a VPP comprising of renewable energy resources (RESs), energy storage systems (ESSs), and several customers. The VPP participates in balance capacity (BC), day-ahead (DA), and intra-day (ID) markets. The scheduling problem is formulated as a two-stage chance-constrained optimization model taking the uncertainty of RESs production, load consumption, and probability of reserve activation into account. The response of VPP after its reserve capacity is called and generated is also considered to increase the operational flexibility of VPP. The proposed model is implemented on a test VPP system, and the effects of RESs sizing, ESSs sizing, and the probability of reserve activation are analyzed. Results indicate that the proposed model can perform well under real-world conditions. |
first_indexed | 2024-03-10T06:43:58Z |
format | Article |
id | doaj.art-06f92009f51848fbbfacb73fb89aec20 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-10T06:43:58Z |
publishDate | 2021-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-06f92009f51848fbbfacb73fb89aec202023-11-22T17:23:13ZengMDPI AGApplied Sciences2076-34172021-10-011120971710.3390/app11209717Optimal Reserve and Energy Scheduling for a Virtual Power Plant Considering Reserve Activation ProbabilityHuy Nguyen Duc0Nhung Nguyen Hong1School of Electrical Engineering, Hanoi University of Science and Technology, Hanoi 11615, VietnamSchool of Electrical Engineering, Hanoi University of Science and Technology, Hanoi 11615, VietnamWith the increasing share of variable and limitedly predictable renewable energy in power systems worldwide, ensuring reserve capacity to maintain the balance of supply and demand becomes more important. On the other hand, the development of the virtual power plant model (VPP) allows renewable sources and energy storage to participate in reserve service. This paper addresses the optimal reserve bidding strategy problem of a VPP comprising of renewable energy resources (RESs), energy storage systems (ESSs), and several customers. The VPP participates in balance capacity (BC), day-ahead (DA), and intra-day (ID) markets. The scheduling problem is formulated as a two-stage chance-constrained optimization model taking the uncertainty of RESs production, load consumption, and probability of reserve activation into account. The response of VPP after its reserve capacity is called and generated is also considered to increase the operational flexibility of VPP. The proposed model is implemented on a test VPP system, and the effects of RESs sizing, ESSs sizing, and the probability of reserve activation are analyzed. Results indicate that the proposed model can perform well under real-world conditions.https://www.mdpi.com/2076-3417/11/20/9717chance-constrained programmingday-ahead schedulingenergy storage systemintra-day schedulingreserve marketrenewable energy source |
spellingShingle | Huy Nguyen Duc Nhung Nguyen Hong Optimal Reserve and Energy Scheduling for a Virtual Power Plant Considering Reserve Activation Probability Applied Sciences chance-constrained programming day-ahead scheduling energy storage system intra-day scheduling reserve market renewable energy source |
title | Optimal Reserve and Energy Scheduling for a Virtual Power Plant Considering Reserve Activation Probability |
title_full | Optimal Reserve and Energy Scheduling for a Virtual Power Plant Considering Reserve Activation Probability |
title_fullStr | Optimal Reserve and Energy Scheduling for a Virtual Power Plant Considering Reserve Activation Probability |
title_full_unstemmed | Optimal Reserve and Energy Scheduling for a Virtual Power Plant Considering Reserve Activation Probability |
title_short | Optimal Reserve and Energy Scheduling for a Virtual Power Plant Considering Reserve Activation Probability |
title_sort | optimal reserve and energy scheduling for a virtual power plant considering reserve activation probability |
topic | chance-constrained programming day-ahead scheduling energy storage system intra-day scheduling reserve market renewable energy source |
url | https://www.mdpi.com/2076-3417/11/20/9717 |
work_keys_str_mv | AT huynguyenduc optimalreserveandenergyschedulingforavirtualpowerplantconsideringreserveactivationprobability AT nhungnguyenhong optimalreserveandenergyschedulingforavirtualpowerplantconsideringreserveactivationprobability |