Generalizations of the results on powers of <inline-formula><graphic file="1029-242X-2001-212195-i1.gif"/></inline-formula>-hyponormal operators

<p/> <p>Recently, as a nice application of Furuta inequality, Aluthge and Wang (<it>J. Inequal. Appl</it>., 3 (1999), 279&#8211;284) showed that "<it>if</it> <inline-formula><graphic file="1029-242X-2001-212195-i2.gif"/></inline-f...

Full description

Bibliographic Details
Main Author: Ito Masatoshi
Format: Article
Language:English
Published: SpringerOpen 2001-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/6/212195
_version_ 1831839396945461248
author Ito Masatoshi
author_facet Ito Masatoshi
author_sort Ito Masatoshi
collection DOAJ
description <p/> <p>Recently, as a nice application of Furuta inequality, Aluthge and Wang (<it>J. Inequal. Appl</it>., 3 (1999), 279&#8211;284) showed that "<it>if</it> <inline-formula><graphic file="1029-242X-2001-212195-i2.gif"/></inline-formula> is a <inline-formula><graphic file="1029-242X-2001-212195-i3.gif"/></inline-formula>-<it>hyponormal operator for</it> <inline-formula><graphic file="1029-242X-2001-212195-i4.gif"/></inline-formula>, <it>then</it> <inline-formula><graphic file="1029-242X-2001-212195-i5.gif"/></inline-formula><it>is</it> <inline-formula><graphic file="1029-242X-2001-212195-i6.gif"/></inline-formula>-<it>hyponormal for any positive integer</it> <inline-formula><graphic file="1029-242X-2001-212195-i7.gif"/></inline-formula>," and Furuta and Yanagida (<it>Scientiae Mathematicae</it>, to appear) proved the more precise result on powers of <inline-formula><graphic file="1029-242X-2001-212195-i8.gif"/></inline-formula>-hyponormal operators for <inline-formula><graphic file="1029-242X-2001-212195-i9.gif"/></inline-formula>. In this paper, more generally, by using Furuta inequality repeatedly, we shall show that "<it>if</it> <inline-formula><graphic file="1029-242X-2001-212195-i10.gif"/></inline-formula> is a <inline-formula><graphic file="1029-242X-2001-212195-i11.gif"/></inline-formula>-<it>hyponormal operator for</it> <inline-formula><graphic file="1029-242X-2001-212195-i12.gif"/></inline-formula>, <it>then</it> <inline-formula><graphic file="1029-242X-2001-212195-i13.gif"/></inline-formula><it>is</it> <inline-formula><graphic file="1029-242X-2001-212195-i14.gif"/></inline-formula>-<it>hyponormal for any positive integer</it> <inline-formula><graphic file="1029-242X-2001-212195-i15.gif"/></inline-formula>" and a generalization of the results by Furuta and Yanagida in (Scientiae Mathematicae, to appear) on powers of <inline-formula><graphic file="1029-242X-2001-212195-i16.gif"/></inline-formula>-hyponormal operators for <inline-formula><graphic file="1029-242X-2001-212195-i17.gif"/></inline-formula>.</p>
first_indexed 2024-12-23T05:51:46Z
format Article
id doaj.art-06fa27d1162d429f958e76d0548b9abb
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-23T05:51:46Z
publishDate 2001-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-06fa27d1162d429f958e76d0548b9abb2022-12-21T17:57:55ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2001-01-0120011212195Generalizations of the results on powers of <inline-formula><graphic file="1029-242X-2001-212195-i1.gif"/></inline-formula>-hyponormal operatorsIto Masatoshi<p/> <p>Recently, as a nice application of Furuta inequality, Aluthge and Wang (<it>J. Inequal. Appl</it>., 3 (1999), 279&#8211;284) showed that "<it>if</it> <inline-formula><graphic file="1029-242X-2001-212195-i2.gif"/></inline-formula> is a <inline-formula><graphic file="1029-242X-2001-212195-i3.gif"/></inline-formula>-<it>hyponormal operator for</it> <inline-formula><graphic file="1029-242X-2001-212195-i4.gif"/></inline-formula>, <it>then</it> <inline-formula><graphic file="1029-242X-2001-212195-i5.gif"/></inline-formula><it>is</it> <inline-formula><graphic file="1029-242X-2001-212195-i6.gif"/></inline-formula>-<it>hyponormal for any positive integer</it> <inline-formula><graphic file="1029-242X-2001-212195-i7.gif"/></inline-formula>," and Furuta and Yanagida (<it>Scientiae Mathematicae</it>, to appear) proved the more precise result on powers of <inline-formula><graphic file="1029-242X-2001-212195-i8.gif"/></inline-formula>-hyponormal operators for <inline-formula><graphic file="1029-242X-2001-212195-i9.gif"/></inline-formula>. In this paper, more generally, by using Furuta inequality repeatedly, we shall show that "<it>if</it> <inline-formula><graphic file="1029-242X-2001-212195-i10.gif"/></inline-formula> is a <inline-formula><graphic file="1029-242X-2001-212195-i11.gif"/></inline-formula>-<it>hyponormal operator for</it> <inline-formula><graphic file="1029-242X-2001-212195-i12.gif"/></inline-formula>, <it>then</it> <inline-formula><graphic file="1029-242X-2001-212195-i13.gif"/></inline-formula><it>is</it> <inline-formula><graphic file="1029-242X-2001-212195-i14.gif"/></inline-formula>-<it>hyponormal for any positive integer</it> <inline-formula><graphic file="1029-242X-2001-212195-i15.gif"/></inline-formula>" and a generalization of the results by Furuta and Yanagida in (Scientiae Mathematicae, to appear) on powers of <inline-formula><graphic file="1029-242X-2001-212195-i16.gif"/></inline-formula>-hyponormal operators for <inline-formula><graphic file="1029-242X-2001-212195-i17.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/6/212195<it>p</it>-Hyponormal operatorFuruta inequality
spellingShingle Ito Masatoshi
Generalizations of the results on powers of <inline-formula><graphic file="1029-242X-2001-212195-i1.gif"/></inline-formula>-hyponormal operators
Journal of Inequalities and Applications
<it>p</it>-Hyponormal operator
Furuta inequality
title Generalizations of the results on powers of <inline-formula><graphic file="1029-242X-2001-212195-i1.gif"/></inline-formula>-hyponormal operators
title_full Generalizations of the results on powers of <inline-formula><graphic file="1029-242X-2001-212195-i1.gif"/></inline-formula>-hyponormal operators
title_fullStr Generalizations of the results on powers of <inline-formula><graphic file="1029-242X-2001-212195-i1.gif"/></inline-formula>-hyponormal operators
title_full_unstemmed Generalizations of the results on powers of <inline-formula><graphic file="1029-242X-2001-212195-i1.gif"/></inline-formula>-hyponormal operators
title_short Generalizations of the results on powers of <inline-formula><graphic file="1029-242X-2001-212195-i1.gif"/></inline-formula>-hyponormal operators
title_sort generalizations of the results on powers of inline formula graphic file 1029 242x 2001 212195 i1 gif inline formula hyponormal operators
topic <it>p</it>-Hyponormal operator
Furuta inequality
url http://www.journalofinequalitiesandapplications.com/content/6/212195
work_keys_str_mv AT itomasatoshi generalizationsoftheresultsonpowersofinlineformulagraphicfile1029242x2001212195i1gifinlineformulahyponormaloperators