Optimization of a Cluster-Based Energy Management System Using Deep Reinforcement Learning Without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading
The concept of Prosumer has enabled consumers to actively participate in Peer-to-Peer (P2P) energy trading, particularly as Renewable Energy Source (RES)s and Electric Vehicle (EV)s have become more accessible and cost-effective. In addition to the P2P energy trading, prosumers benefit from the rela...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10452350/ |
_version_ | 1797272663285039104 |
---|---|
author | Mete Yavuz Omer Cihan Kivanc |
author_facet | Mete Yavuz Omer Cihan Kivanc |
author_sort | Mete Yavuz |
collection | DOAJ |
description | The concept of Prosumer has enabled consumers to actively participate in Peer-to-Peer (P2P) energy trading, particularly as Renewable Energy Source (RES)s and Electric Vehicle (EV)s have become more accessible and cost-effective. In addition to the P2P energy trading, prosumers benefit from the relatively high energy capacity of EVs through the integration of Vehicle-to-X (V2X) technologies, such as Vehicle-to-Home (V2H), Vehicle-to-Load (V2L), and Vehicle-to-Grid (V2G). Optimization of an Energy Management System (EMS) is required to allocate the required energy efficiently within the cluster, due to the complex pricing and energy exchange mechanism of P2P energy trading and multiple EVs with V2X technologies. In this paper, Deep Reinforcement Learning (DRL) based EMS optimization method is proposed to optimize the pricing and energy exchanging mechanisms of the P2P energy trading without affecting the comfort of prosumers. The proposed EMS is applied to a small-scale cluster-based environment, including multiple <xref rid="deqn6" ref-type="disp-formula">(6)</xref> prosumers, P2P energy trading with novel hybrid pricing and energy exchanging mechanisms, and V2X technologies (V2H, V2L, and V2G) to reduce the overall energy costs and increase the Self-Sufficiency Ratio (SSR)s. Multi Double Deep Q-Network (DDQN) agents based DRL algorithm is implemented and the environment is formulated as a Markov Decision Process (MDP) to optimize the decision-making process. Numerical results show that the proposed EMS reduces the overall energy costs by 19.18%, increases the SSRs by 9.39%, and achieves an overall 65.87% SSR. Additionally, numerical results indicates that model-free DRL, such as DDQN agent based Deep Q-Network (DQN) Reinforcement Learning (RL) algorithm, promise to eliminate the energy management complexities with multiple uncertainties. |
first_indexed | 2024-03-07T14:31:37Z |
format | Article |
id | doaj.art-06fc2fd395ed4f5180886a6aa705b16e |
institution | Directory Open Access Journal |
issn | 2169-3536 |
language | English |
last_indexed | 2024-03-07T14:31:37Z |
publishDate | 2024-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Access |
spelling | doaj.art-06fc2fd395ed4f5180886a6aa705b16e2024-03-06T00:01:29ZengIEEEIEEE Access2169-35362024-01-0112315513157510.1109/ACCESS.2024.337092210452350Optimization of a Cluster-Based Energy Management System Using Deep Reinforcement Learning Without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy TradingMete Yavuz0https://orcid.org/0000-0001-9153-1605Omer Cihan Kivanc1Department of Electrical and Electronics Engineering, Istanbul Okan University, İstanbul, TurkeyDepartment of Electrical and Electronics Engineering, Istanbul Okan University, İstanbul, TurkeyThe concept of Prosumer has enabled consumers to actively participate in Peer-to-Peer (P2P) energy trading, particularly as Renewable Energy Source (RES)s and Electric Vehicle (EV)s have become more accessible and cost-effective. In addition to the P2P energy trading, prosumers benefit from the relatively high energy capacity of EVs through the integration of Vehicle-to-X (V2X) technologies, such as Vehicle-to-Home (V2H), Vehicle-to-Load (V2L), and Vehicle-to-Grid (V2G). Optimization of an Energy Management System (EMS) is required to allocate the required energy efficiently within the cluster, due to the complex pricing and energy exchange mechanism of P2P energy trading and multiple EVs with V2X technologies. In this paper, Deep Reinforcement Learning (DRL) based EMS optimization method is proposed to optimize the pricing and energy exchanging mechanisms of the P2P energy trading without affecting the comfort of prosumers. The proposed EMS is applied to a small-scale cluster-based environment, including multiple <xref rid="deqn6" ref-type="disp-formula">(6)</xref> prosumers, P2P energy trading with novel hybrid pricing and energy exchanging mechanisms, and V2X technologies (V2H, V2L, and V2G) to reduce the overall energy costs and increase the Self-Sufficiency Ratio (SSR)s. Multi Double Deep Q-Network (DDQN) agents based DRL algorithm is implemented and the environment is formulated as a Markov Decision Process (MDP) to optimize the decision-making process. Numerical results show that the proposed EMS reduces the overall energy costs by 19.18%, increases the SSRs by 9.39%, and achieves an overall 65.87% SSR. Additionally, numerical results indicates that model-free DRL, such as DDQN agent based Deep Q-Network (DQN) Reinforcement Learning (RL) algorithm, promise to eliminate the energy management complexities with multiple uncertainties.https://ieeexplore.ieee.org/document/10452350/Energy management systempeer-to-peer energy tradingvehicle-to-homemulti-agent reinforcement learningdeep reinforcement learningsmart grids |
spellingShingle | Mete Yavuz Omer Cihan Kivanc Optimization of a Cluster-Based Energy Management System Using Deep Reinforcement Learning Without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading IEEE Access Energy management system peer-to-peer energy trading vehicle-to-home multi-agent reinforcement learning deep reinforcement learning smart grids |
title | Optimization of a Cluster-Based Energy Management System Using Deep Reinforcement Learning Without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading |
title_full | Optimization of a Cluster-Based Energy Management System Using Deep Reinforcement Learning Without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading |
title_fullStr | Optimization of a Cluster-Based Energy Management System Using Deep Reinforcement Learning Without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading |
title_full_unstemmed | Optimization of a Cluster-Based Energy Management System Using Deep Reinforcement Learning Without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading |
title_short | Optimization of a Cluster-Based Energy Management System Using Deep Reinforcement Learning Without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading |
title_sort | optimization of a cluster based energy management system using deep reinforcement learning without affecting prosumer comfort v2x technologies and peer to peer energy trading |
topic | Energy management system peer-to-peer energy trading vehicle-to-home multi-agent reinforcement learning deep reinforcement learning smart grids |
url | https://ieeexplore.ieee.org/document/10452350/ |
work_keys_str_mv | AT meteyavuz optimizationofaclusterbasedenergymanagementsystemusingdeepreinforcementlearningwithoutaffectingprosumercomfortv2xtechnologiesandpeertopeerenergytrading AT omercihankivanc optimizationofaclusterbasedenergymanagementsystemusingdeepreinforcementlearningwithoutaffectingprosumercomfortv2xtechnologiesandpeertopeerenergytrading |