Summary: | The fidelity of quantum states is an important concept in quantum information. Improving quantum fidelity is very important for both quantum communication and quantum computation. In this paper, we use a quantum neural network (QNN) to enhance the fidelity of [6, 2, 2] quantum convolutional codes. Towards the circuit of quantum convolutional codes, the target quantum state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mn>0</mn><mo>⟩</mo></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mn>1</mn><mo>⟩</mo></mrow></semantics></math></inline-formula> is turned into entangled quantum states, which can defend against quantum noise more effectively. As the quantum neural network works better for quantum states with low dimension, we divide the quantum circuits into two parts. Then we apply the quantum neural network to each part of the circuit. The results of the simulation show that the network performs well in enhancing the fidelity of the quantum states. Through the quantum neural network, the fidelity of the first part is enhanced from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>95.2</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99.99</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and the fidelity of the second part is enhanced from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>93.88</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.57</mn><mo>%</mo></mrow></semantics></math></inline-formula>.
|